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Summary — Weight reduction is a very important issue in the industry, particularly in the industry of 

transport vehicles. To meet this objective, ESI has developed a disruptive and innovative optimization 

tool based on the technology of the level-set [[5], [6]]. Unlike existing methods (homogenization, and 

flavors: power law, SIMP etc. [[1], [8]]), the level-set representation allows an accurate sharp knowledge 

of the boundary location, thus we are able to have a large scope of geometrical constraints of the shape, 

or to include manufacturing constraints involving precise knowledge of the shape like casting or additive 

manufacturing processes. 

Keywords — Shape optimization, Topological optimization, Level-Set, TOPOLEV, casting, additive 

manufacturing. 

1. Introduction 

Weight reduction is a major issue for the industry. Especially in Vehicles industry where the 

reduction of energy consumption is engaged to reduce environmental impact. The first goal of the 

topological optimization is to find new shapes that minimize an objective (most of the time the volume 

or the mass) but preserve a sufficient level of performance. 

2. Level-set representation 

2.1. Shape representation 

Most of existing optimization software solutions use a density approach to represent the shape on a 

fixed mesh. In our method we have chosen to use the now well-known level-set method for our shape 

representation. 

Let be an open bounded 𝐷 ⊂ ℝ3 we called ‘design space’, is the maximum space where to search 

for an optimal shape. Let be Ω an admissible shape then Ω ⊂ 𝐷. 

In order to represent the shape Ω in the design space, we defined a function 𝜓 (the level-set function) 

on 𝐷 such as: 

{

𝜓(𝑥) = 0 ⇔ 𝑥 ∈ 𝜕Ω

𝜓(𝑥) < 0 ⇔ 𝑥 ∈ Ω

𝜓(𝑥) > 0 ⇔ 𝑥 ∈ (𝐷\Ω̅)

 
(1) 

A good common choice for a function that fits these rules is to use the signed distance to the 
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boundary. This kind of choice for level-set function implies a strong regularity of the function, but also 

helps for geometrical criteria. 

The evolution of the shape is governed by the now well-known Hamilton Jacobi problem: 

𝜕𝜓

𝜕𝑡
− 𝑣|∇𝜓| = 0 (2) 

In this equation, 𝑡 is a fictitious time representing the optimization step increment. 𝑣 is called ‘descent 

direction’ and is given by the optimizer. 

2.2. Computation of the descent direction 

The main goal of the optimizer is to compute the descent direction and has been studied a lot ([4], 

[9]). With the standard methods, a lot of algorithms are available (SLP, MMA, SQP, MFD, Uzawa, etc.) 

but all these methods rely on explicit optimization parameters. With the use of level-set, the optimization 

parameter is implicit (the place where the level-set function is null). 

The optimization problem is written as: 

{
min

Ω
𝑓(Ω)

𝑔𝑖(Ω) ≤ 0 ∀𝑖
 (3) 

Where 𝑓 is called the objective function and 𝑔𝑖 are the constraints, the union of objective and 

constraints are called ‘criteria’ of the optimization. 

In order to compute the descent direction we need to evaluate all the criteria, and to solve the problem 

(3), most of algorithm also need the gradient. By generalizing the gradient formulation given by [1] we 

obtain the expression of a linear static mechanical criterion as: 

𝐽(Ω) = (∫ 𝑗𝑑𝑥
Ω

)

𝛽

+ (∫ 𝑙𝑑𝑥
𝜕Ω

)

𝛾

 
(4) 

And the formulation of its gradient: 

𝐽′(Ω)(𝜃) = ∫ 𝜃. 𝑛 (𝛽𝐶𝑗0𝑗 + 𝜎𝑝: 𝜀𝑢 − 𝑝. 𝑓 −
𝜕(𝑝. 𝑔)

𝜕𝑛
− 𝜅(𝑝. 𝑔) + 𝛾𝐶𝑙0 (

𝜕𝑙

𝜕𝑛
+ 𝜅𝑙))

∂Ω𝑁

+ ∫ 𝜃. 𝑛 (𝛽𝐶𝑗0𝑗 + 𝜎𝑝: 𝜀𝑢 − 𝑝. 𝑓 + 𝛾𝐶𝑙0 (
𝜕𝑙

𝜕𝑛
+ 𝜅𝑙) −

𝜕(ℎ𝜎𝑝)

𝜕𝑛
𝑛 − 𝜅(ℎ𝜎𝑝)𝑛)

∂Ω𝐷

 
(5) 

In this equation, 𝐶𝑗0 = (∫ 𝑗 𝑑𝑥
Ω

)
𝛽−1

and 𝐶𝑙0 = (∫ 𝑙 𝑑𝑥
∂Ω

)
𝛾−1

.  

The mean curvature 𝜅 and the normal 𝑛 to the boundary are computed using geometrical properties 

of the level-set. 

𝑢 is computed as the solution of the static linear problem: 

{

−𝛻. 𝜎𝑢 = 𝑓 𝑖𝑛 Ω

𝑢 = ℎ 𝑜𝑛 ∂Ω𝐷

𝜎𝑢. 𝑛 = 𝑔 𝑜𝑛 ∂Ω𝑁

 
(6) 
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And 𝑝 is the solution of the adjoint problem given by: 

{

−𝛻. 𝜎𝑝 = −𝛽𝐶𝑗0𝑗′(𝑢) 𝑖𝑛 𝛺

𝑝 = 0 𝑜𝑛 ∂Ω𝐷

𝜎𝑝. 𝑛 = −𝛾𝐶𝑙0𝑙′(𝑢) 𝑜𝑛 ∂Ω𝑁

 
(7) 

The main advantage of this adjoint problem is that the left-hand side of the problem is the same as 

the direct mechanical problem. Thus the matrix factorization done for the direct problem could be used 

for the computation of the adjoint problem. 

3. Some manufacturing constraints 

3.1. Maximum thickness 

According to [3], the maximum thickness 𝑇𝑚𝑎𝑥 could be interpreted such that there is no point inside 

the shape which are the center of a ball of diameter 𝑇𝑚𝑎𝑥 fully covered by material. In other terms, there 

is no point inside the shape that is farther than 𝑇𝑚𝑎𝑥/2 from a boundary. 

As the level-set function is the signed distance to the boundary, with a negative sign inside the shape, 

we could express the criterion as: 

−2𝜓(𝑥) ≤ 𝑇𝑚𝑎𝑥, ∀𝑥 ∈ Ω 
(8) 

This is a semi-infinite criterion, therefore the integral form of the criterion use is: 

𝐽𝑀𝑇(Ω) = (
∫ 𝑓(𝜓)(−2𝜓(𝑥))

𝛼

Ω

∫ 𝑓(𝜓)
Ω

)

1
𝛼

≤ 𝑇𝑚𝑎𝑥 (9) 

With 𝛼 > 1 

Where the function 𝑓(𝜓) is use to ‘activate’ the terms only at the location where the constraint is 

violated. In order to have a function with sufficient regularity we use: 

𝑓(𝜓) =
1

2
(1 − tanh (

−2𝜓(𝑥) − 𝑇𝑚𝑎𝑥

𝛽𝑇𝑚𝑎𝑥
)) 

(10) 

Figure 1 - Impact of maximum thickness threshold on design 
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The parameter 𝛽 is used to control the regularization of the function; if 𝛽 → +∞ the function tend to 

the Heaviside function. 

Some example could be seen on figure 2, which shows the impact of the threshold on the topology 

of the solution.  

3.2. Angular control 

An angular criterion control could be interpreted as for a given direction 𝑑 and a given maximum 

angle 𝜙𝑚𝑎𝑥 the angle that forms the boundary surface with the normal plan to the direction should not 

exceed the maximum angle. 

In other terms the criterion could be expressed as: 

𝑑. 𝑛 ≤ sin(𝜙𝑚𝑎𝑥) , ∀𝑥 ∈ 𝜕Ω 
(11) 

For example, for casting consideration, we will use a positive angle (typically 3°), but if we use 

additive manufacturing constraint we will use a negative angle (for example -35° for powder bed) 

As the maximum thickness constraint, this constraint must be expressed as a semi-infinite constraint 

with an integral form as: 

𝐽𝐴𝐶(Ω) = (
∫ 𝑓(𝑑. 𝑛)(𝑑. 𝑛)𝛼

∂Ω

∫ 𝑓(𝑑. 𝑛)
∂Ω

)

1
𝛼

≤ sin(𝜙𝑚𝑎𝑥) (12) 

With the function 𝑓(𝜓): 

𝑓(𝑑. 𝑛) =
1

2
(1 − tanh (

𝑑. 𝑛 − sin(𝜙𝑚𝑎𝑥)

𝛽 sin(𝜙𝑚𝑎𝑥)
)) 

(13) 

On Figure 2, we could see the result of two optimizations with and without the angular control. With 

the angle set to 0, we allow in this case to have vertical wall but no part of the shape boundary could 

face the bottom. 

4. Industrial result 

4.1. Automobile test case 

Figure 2 - (left) no angular control, (right) direction Z, angle of 0 
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In this case, only the interior part of the bracket is optimized (on Figure 3, the white part) 

The objective is to minimize the volume with constraints on stiffness (control the displacement of 

loaded nodes), constraints of vibration (control the first Eigen Frequency), angular constraint (in Z 

direction, angle 0°), maximum thickness of the components, and control of the maximum Von Mises. 

Figure 3 shows the initial shape and the optimized shape remeshed. The mass gain is about 25% 

4.2. Aeronautic test case 

This case is an engine bracket which has 14 mechanical load cases. 

In this test case, the objective is to minimize the sum over the 14 load cases of the compliance (i.e. 

maximization of the rigidity) the constraints are to constraint the displacement of certain nodes in each 

load case and constraint the mass in order to have reduction of 30%. 

Only small parts of this case are set not optimizable, (in yellow on the figure) 

Figure 4 shows the shape at initial and final stages. 

Figure 3 – Initial geometry (left) Optimized shape remeshed (right) 
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Figure 4 – Initial geometry (left) Optimized shape remeshed (right) 
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