
CSMA 2017
13ème Colloque National en Calcul des Structures

15-19 Mai 2017, Presqu’île de Giens (Var)

A Manifold Learning Approach to Data-Driven Computational Me-
chanics

R. Ibañez1, E. Abisset-Chavanne1, J.V. Aguado1, D. Gonzalez2, E. Cueto2, F. Chinesta1

1 ICI Institute, Ecole Centrale Nantes, {Ruben.Ibanez-Pinillo,Emmanuelle.Abisset-Chavanne,Jose.Aguado-Lopez,Francisco.Chinesta}@ec-nantes.fr
2 Aragon Institute of Engineering Research, Universidad de Zaragoza, Spain, {gonzal;ecueto}@unizar.es

Résumé — Standard simulation in classical mechanics is based on the use of two very different types
of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,
...), whereas the second one consists of models that scientists have extracted from collected, natural or
synthetic data. In this work we propose a new method, able to directly link data to computers in order
to perform numerical simulations. These simulations will employ universal laws while minimizing the
need of explicit, often phenomenological, models. They are based on manifold learning methodologies.
Mots clés — data-driven, model-free, manifold learning.

1 Introduction

In the present work we will assume that all the needed data is available. We will not address all the
difficulties related to data generation or obtention from adequate experiments. This is a topic that, of
course, remains open. On the contrary, we develop a method in which this stream of data plays the role
of a constitutive equation, without the need of a phenomenological fitting to a prescribed model.

To better understand the data-driven rationale addressed in the present work, let us consider, for the
sake of clarity, a very simple problem : linear elasticity. In that case the balance of (linear and angular)
momentum leads to the existence of a symmetric second-order tensor σ (the so-called Cauchy’s stress
tensor) verifying equilibrium, expressed in the absence of body forces, as :

Find the displacement field u∈ (H 1(Ω))3 satisfying the essential boundary conditions u(x∈ ΓD) =
ug(x) such that ∫

Ω

ε
∗ : σ dx=

∫
ΓN

u∗ · t dx, (1)

∀u∗ regular enough and vanishing on ΓD, i.e. ∀u∗ ∈
(
H 1

0 (Ω)
)3.

The weak form given by Eq. (1) involves kinematic and dynamic variables from the test displacement
field u∗ and the stress tensor σ respectively. In order to solve it a relationship linking kinematic and
dynamic variables is required, the so-called constitutive equation. The simplest one, giving rise to linear
elasticity, is known as Hooke’s law (even if, more than a law, it is simply a model), and writes

σ = λTr(ε)I+µε, (2)

where Tr(•) denotes the trace operator, and λ and µ are the Lame coefficients directly related to the
Young modulus E and the Poisson coefficient ν.

By introducing the constitutive model, Eq. (2), into the weak form of the balance of momentum,
Eq. (1), a problem is obtained that can be formulated entirely in terms of the displacement field u. By
discretizing it, using standard finite element approximations, for instance, and performing numerically
the integrals involved in Eq. (1), we finally obtain a linear algebraic system of equations, from which the
nodal displacements can be obtained.

In the case of linear elasticity there is no room for discussion : the approach is simple, efficient and
has been applied successfully to many problems of interest. Today, there are numerous commercial codes
making use of this mechanical behavior and nobody doubts about its pertinence in engineering practice.
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However, there are other material behaviors for whom simple models fail to describe any experimental
finding. These models lack of generality (universality) and for this reason a mechanical system is usually
associated to different models that are progressively adapted and/or enriched from the collected data.

The biggest challenge could then be formulated as follows : can simulation proceed directly from
data by circumventing the necessity of establishing a constitutive model ? In the case of linear elasticity
it is obvious that such an approach lacks of interest. However, in other branches of engineering science
and technology it should be an appealing alternative to standard constitutive model-based simulations.
In our opinion, we are at the beginning of a new era, the one of data-based or, more properly, data-driven
engineering science and technology, where as much as possible data should be collected and information
extracted in a systematic way by using adequate machine learning strategies. Then, simulations could
proceed directly from this automatically acquired knowledge.

2 Constitutive manifold

Imagine, to begin with (more general scenarios will soon be considered) mechanical tests conducted
on a perfectly linear elastic material, in a specimen exhibiting uniform stresses and strains. As previously
indicated, in this paper we do not address issues related to data generation. Thus, for M randomly applied
external loads, we assume ourselves able to collect M couples (σm,εm), m = 1, . . . ,M. These pairs could
be represented as a single point Xm in a phase space of dimension D = 12 (the six distinct components
of the stress and strain tensors, respectively). In the sequel Voigt notion will be considered, i.e. stress
and strain tensors will be represented as vectors and the fourth-order elastic tensor reduces to a square
matrix.

Each vector Xm thus defines a point in a space of dimension D and, therefore, the whole set of
samples represents a set of M points in RD. We conjecture that all these points belong to a certain low-
dimensional manifold embedded in the high-dimensional space RD. Imagine for a while that the M points
belong to a curve, a surface or a hyper-surface of dimension d� D.

Therefore, appropriate manifold learning (or non-linear dimensionality reduction) techniques are
needed to extract the underlying manifold (when it exists) in multidimensional phase spaces. A pano-
ply of techniques exist to this end. In this work we focus on the particular choice of Locally Linear
Embedding —LLE— techniques [1]. In the linear elastic behavior the application of the just described
technique results, as expected, in a flat manifold of dimension two, i.e. d = 2. This is in perfect agreement
to the fact that Hooke’s law is completely characterized by two coefficients (either Young’s modulus and
Poisson coefficient, or Lame’s coefficients) and is linear.

However, for the method to be useful, we need to define a strategy to solve problems stated in weak
form and discretized by finite elements. Several options can be considered, which are described next.

1. Identifying the locally linear behavior. If we consider locally linear approximations, we can
write

Xm =
M

∑
i=1

WmiXi,

with Wmi = 0 if i /∈ Sm (set containing the K-nearest neighbors of Xm). By minimizing the functional

H (C) = ∑
i∈Sm

(σi−C · εi)
2.

we obtain C(Xm)≡ Cm.
2. Identifying the locally linear tangent behavior. In order to consider Newton strategies the locally

tangent linear behavior should be computed. Again, it is easy to obtain by considering ∆mi ≡
Xm−Xi = (σm−σi,εm− εi) or ∆mi = (∆σm

i ,∆εm
i ), i ∈ Sm. Because of the locally linear behavior

around point Xm, we can write
∆σ

m
i = CT ·∆ε

m
i , (3)

that allows defining the functional HT (CT )

HT (CT ) = ∑
i∈Sm

(∆σ
m
i −CT ·∆ε

m
i )

2, (4)

whose minimization results in the tangent elastic tensor CT (Xm)≡ CT,m.
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3. No model at all. The third level of description considers points Xm without trying to identify local
behavior models at all. This third description was deeply discussed in [2].

3 Data-driven simulation

From the just identified locally linear behavior C(X) one could apply the simplest explicit lineariza-
tion technique operating on the standard weak form∫

Ω

ε
∗(x) : σ

n+1(x) dx=
∫

ΓN

u∗(x) · t(x) dx, (5)

where at each point, from the stress-strain couple at position x, X(x), the locally linear behavior
C(X(x)) can be obtained (in practice at the Gauss points used for the integration of the weak form)
that allows us to write (using Voigt notation)∫

Ω

ε
∗(x) · (C(x) · ε(x)) dx=

∫
ΓN

u∗(x) · t(x) dx.

This allows, in turn, to compute the displacement field and from it, to update the strain and stress fields,
to compute again the locally linear behavior. The process continues until convergence. The discretization
related to the other two descriptions just introduced were deeply considered in [2].

4 A simple nonlinear behavior : the linear-elastic perfectly-plastic beha-
vior

we start by addressing the case of a linear-elastic-perfectly plastic 2D behavior. We assume the linear
elastic contribution defined locally from C(Xe) (Xe refers to the stress-elastic strain manifold) whereas
the plastic contribution that involves the yield surface f (σ) is assumed given by its own manifold.

Using again Voigt notation, the elastic behavior expressed from σ = C · εe, where C represents the
manifold-based elastic tensor and εe refers to the elastic component of the deformation (the reversible
one). The total strain can be decomposed in its elastic and inelastic components,

ε = ε
e + ε

p,

where we assume the plastic flow rate

ε̇
p = λ

∂ f (σ)
∂σ

= λn,

where the yield surface f (σ) is provided by experimental data. To generate these data in silico, we assume
that it follows a von Mises model f (σ) = σe−Y , with Y the yield stress (no hardening is considered)
and σe the equivalent stress related to the von Mises criterion. f (σ) results in the surface represented in
Fig. 1 where, for the sake of clarity, it is represented in the space of stresses.

The persistency condition ḟ (σ) = 0 when plastic flow occurs, results in the following plastic flow

λ =
nT ·C · ε̇
nT ·C ·n

,

or in its incremental counterpart

λ =
nT ·C ·∆ε

nT ·C ·n
,

with now ∆εp = λn.
Here three fields must be considered, stress, strain and plastic strain. As soon as the last one is known,

the elastic strain can be locally determined and the stresses obtained from the elastic manifold using the
couple stress-elastic component of the strain.

In these expressions everything is properly defined except n, since we assume that the explicit form
of the yield condition, i.e. f (σ) is unknown and the only available data is the manifold depicted in Fig.
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FIGURE 1 – Plastic manifold associated to the von Mises plasticity case.

FIGURE 2 – Stress trajectory in the stress space in the elastic-perfecly plastic behavior

1. However, n is easily accessible by considering the normal vector to the plastic manifold depicted in
Fig. 1.

Now one could imagine performing a standard linear elastic-perfectly plastic simulation by using a
finite element explicit code where the plastic deformation is computed from the manifold that allows
extracting n instead of the knowledge of function f (σ) and its explicit derivative with respect to the
stresses.

When considering the traction of a square domain along its right side, with appropriate boundary
conditions on its left side (with tension-free conditions on the top and bottom boundaries) ensuring an
homogeneous stress and strain fields everywhere in the domain, the stress trajectory in the stress space
is depicted in Fig. 2. It can be noticed that the elastic behavior applies when the stress remains inside the
plastic surface and then it remains in the surface during the plastic flow. Again, for the sake of simplicity,
the results are shown in the stress domain.
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