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Résumé — This work analyses the error committed when sampling a random field with the spectral
representation method. We conclude the error decreases proportionally to the size of the domain. The
problem is that the cost of generation a random field scales as O(N log(N)), where N is the number of
points in the simulation. We proposes a subdivision-method that maintain where we can glue together
several sample blocks (generated with a O(N log(N)) complexity) into one single field. This allows to
have a O(N) scalability of the system, saving much computational effort and suited to massively parallel
architectures.
Mots clés — Gaussian-random field sampling, large-scale simulation, parallel computing.

1 Introduction

The use of random fields to represent fluctuating parameters is very common in many scientific
domains as micromechanics [1], geomechanics [2, 3] and structural mechanics [4, 5]. With the increase
of computational power, we are able to increase the size of simulated domains. As the size of the domain
increases, generating these random fields can take more time than the simulation itself. In other words
the sampling of the random field can become a computational bottleneck that makes the use of random
samples impractical.

In order to tackle this problem we first analyse the existing generation techniques. One generate ran-
dom using methods in space (direct methods) or in the wave-number domain(spectral methods). Direct
methods generate realizations by multiplying a white noise by the square root of the covariance matrix.
The calculation of this square root is usually computationally expensive. The Cholesky factorization [6]
can be used but scales as (N3), where N is the number of points of the sample. Alternatively, the genera-
tion can be performed in the spectral domain [7, 8]. In this approach the numerical cost is essentially that
of computing the inverse Fourier transform, so it scales as O(N logN) with the Fast Fourier Transform
(FFT). However, the parallelization of the FFT algorithm over memory-distributed clusters is not trivial,
and involves a large amount of communication between processors. This causes performance loss, and
systematically leads to a complexity below the theoretical O(N logN) when a large number of processors
are involved.

We are interested in lowering the computational cost but keep te field quality the same. To minimize
the initial cost of computation the most appealing approach is to use spectral-methods along with a FFT.
The first part of this work explain how the spectral representation works. To carry on a discussion about
quality some error norms are developed in section (3). The forth section shows a new method to build
the random sample from smaller samples, making the error on the sample independent of the size of the
domain and the last section shows some numerical results.

2 Spectral Representation for random field

The generation of a random field u in a domain D that follows a correlation function R can be obtai-
ned by linear combination of independent and identically distributed (i.i.d.) random variables. Mathema-
tically we can write that u=G(ξ) for any linear operator G of Lp(D) and white noise ξ= {ξ(v) : v∈Rd}.
A necessary and sufficient condition to this approach is that G†G = R , where we note G† the conjugate
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transpose of G . In the case of Spectral Representation the operator G is the Fourier Transform, so we
have :

∀x ∈ D,u(x) =
∫

k∈Rd
R̂ 1/2(k)eik·x

ξ(k)dk (1)

The statistics of first and second order are then E[u(x)] = 0 and E[|u(x)|2] = 1. And the resulting corre-
lation function is :

E[u(x)u(y)] =
∫
(k1,k2)∈(Rd)

2 R̂ (k1)R̂ (k2)eik1·xe−ik2·yE[ξ(k1)ξ(k2)]dk1dk2 = R (x− y) (2)

Most of the time, we will take ξ = ζeiφ where ζ is a Gaussian random variable centered and with unitary
variance and φ is a random variable uniformly distributed in [0,2π].

Aiming numerical tests we are obliged to bound our domain to D = [0,L]d . To make use of the
Fourier series expansion one can consider that R coincides with a S-periodic function RS of Rd :

RS(xi) = RS(xi +S), ∀xi ∈ Rd (3)

We suppose also that `c� L < S. The Fourier series expansion of RS, ∀x ∈ D, is RS(x) = ∑n∈Z R̂nei 2π

S k·x

where R̂n =
1
Sd

∫
D RS(x)e−i 2π

S n·xdx. Using n ∈ Nd the representation of u becomes then :

u(x) = ∑
n

R̂ 1/2
n ξ(n)ei 2π

S n·x (4)

where ξ= {ξ(n) : n∈Nd} is a white noise of Nd . Since S� `c we can assume that : R̂n =
1
Sd

∫
D RS(x)e−i 2π

S n·xdx≈
1
Sd

∫
Rd R (x)e−i 2π

S n·xdx.
Another requirement to make simulations possible is that the series of equation (4) need to be trunca-

ted at some point. This is acceptable if there is a cutoff wave number kcut > 0 that defines Ncut =
S

2π
kcut, such

that ∑n≥Ncut |R̂n| ≈ 0. It leads to the structured spectral representation of u, first introduced by Shinozuka
[7] :

uSTR(x) = ∑
n<Ncut

R̂ 1/2
n ξ(n)ei 2π

S n·x (5)

In this paper we will call this representation of u the Structured approach (STR) given we cover the
spectrum of u with a uniform step ∆k = 2π

L .
An efficient way to compute equation (5) is the Fast Fourier Transform. However, it requires our

spatial discretization to be equally-spaced and structured. We assume the spatial step defined as ∆x = L
Nx

,
where Nx is the number of points in the spatial domain [0,L]. We can establish a numerical cutoff wave
number such that : kcut∆x = 2π so kcut =

2π

L Nx. For a given m ∈ [[0,Nx−1]]d , u becomes :

u(m∆x) = ∑
n≤Nx−1

R̂ 1/2
n ξ(n)e2iπn·m (6)

We can recognize in equation (6) u as the inverse Discrete Fourier Transform (DFT) of a random vector :

uFFT(m∆x) = Nd
x DFT−1

([
R̂ 1/2

n ξ(n)
]

n∈[[0,Nx−1]]d

)
(7)

where DFT is the Discrete Fourier Transform operator. The FFT Algorithm provides an optimal way to
compute (7).

3 Error Estimation

In this section we will develop two estimators of the correlation function to quantify the quality of
the field generated by each method. When sampling a random field u one should truncate the series
expansion at some point. If we go far enough the central limit theorem says that we’ll obtain Gaussian
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first-order marginal as long as ξ is a white noise of Rd . The representation of the spectra is affected by
two choices : the way of discretizing k and how many terms we use to represent it (truncation). Precision
criteria should be able to quantify the quality of the field based on these two parameters.

We introduce here two error estimators : εh and εω. The first, εh, takes into account the error on the
representation of R due to discretization. The second, εω, quantifies the error expected in R for a single
realization ω ∈Ω.

3.1 Estimators of R

Before introducing the error estimators we must develop two estimators of the correlation funtion R .
For a given ω ∈Ω, we define Rω, an estimator of R computed with a realization uω of u :

Rω(z) =
1
|D|

∫
Dz

uω(x)uω(x+ z)dx, ∀z ∈ D (8)

where |D|=
∫

D dx. The estimator Rω is a mesure of the ergodicity of the field since to estimate R from
one single realization uω we use the spatial average instead of ensemble average. This estimator is a
random variable and depends on the realization. The second estimator R of the correlation function R
takes in account all the realizations uω for every ω ∈Ω :

R(z) = E [ω 7→ Rω(z)] =
1
|D|

∫
Dz

E [u(x+ z)u(x)]dx (9)

This estimator quantifies the impact of using a discretized wave-number space to compute R with and is
deterministic.

3.2 Error decomposition

Using the two estimators Rω and R we can decompose the total error in two parts : one deterministic
and one stochastic. This decomposition, for a given ω ∈Ω and p ∈ N, gives us the threshold :

‖R −Rω‖Lp(D) ≤ ‖R −R‖Lp(D)+‖R−Rω‖Lp(D) (10)

The first term on the right-hand side gives the deterioration of the correlation function due to the discre-
tization of the wave-number space. It is deterministic. The Fourier Series Expansion of R , is from an
algebraic point view, an optimal projection with respect the L2(D)-norm. This is the reason why we will
use the L2(D) norm. We can then conclude our first estimate :

εh = ‖R−R ‖L2(D) (11)

The second term on the right-hand side is realization-dependent and so is a random variable. A well-
known result from the Central Limit Theorem ensures that for a random variable Xk the quantity Sn =
1
n ∑

n
k=1 Xk of mean S̄ satisfies :

P
(∣∣Sn− S̄

∣∣≤ zα√
n

)
= 1−α (12)

where zα is the quantile of the standard Normal distribution N (0,1) and 1−α is the confidence interval.
Putting Sn = Rω−R we can use this expression to analyse each realization ω ∈ Ω. This is our second
error estimate εω :

P
[
‖Rω−R‖L2(D) ≤ εω

]
= 1−α (13)

where εω = zα√
n + S̄
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3.3 A priori error estimation

By construction of the sample u, there is E [u(x)u(x+ z)] ≈ ∑n≤Ncut R̂nei 2π

L n·z. The discretized and
truncated R is (cf. 3.1) our R(z) = ∑n≤Ncut R̂nei 2π

L n·z. The truncation error is then :

εh = R (z)−R(z) = ∑
n>Ncut

R̂nei 2π

L n·z,∀z ∈ D, (14)

According to the Parseval identity, the L2(D)-norm could be easily computed as follow :

‖R −R‖2
L2(D) = ∑

n>Ncut

|R̂n|2 (15)

The indexer n is a d-dimensional vector. We will note one of the components of n by ni. Observing that
R̂n ≈ 0 if any ni → ∞ we can change the notation from R̂n to R̂ni . Suppose there is δ > 1 for which
limni→∞ nδ

i |R̂ni |2 = 0. In other words |R̂ni |2 decreases faster than 1
nδ

i
. We need for our demonstration a

result about the p-series, ∑
∞

n=(Ncut+1)
1
nδ

∝ O
(

1
Nδ−1

cut

)
. The right-hand side of Equation (15) for ni becomes :

∑
ni>Ncut

|R̂ni |2 <

(
∞

∑
ni=Ncut+1

1
ni

δ

)
(Nδ

cut|R̂Ncut |
2
)≈ O

(
Ncut|R̂Ncut |2

)
(16)

expanding this result for the d components of n we can conclude that

εh = ||R −R||L2(D) = O
(

Nd/2
cut |R̂Ncut |

)
(17)

To calculate εSTR
ω we should note that for a given z ∈ D and a given ω ∈Ω,

Rω(z) =
1
|D| ∑

n1≤Ncut

∑
n2≤Ncut

√
R̂n1R̂n2 (ξω(n1)ξω(n2))ei 2π

S n2·z
∫

Dz

ei 2π

S (n1−n2)·xdx (18)

where ∀n∈Nd , ξω(n) is a realization of the random variable ω 7→ ξω(n). If the domain D� `c
1
|D|

∫
Dz

ei 2π

S (n1−n2)·xdx
≈ δ(n1−n2) and there is :

Rω(z) = ∑
n≤Ncut

R̂nei 2π

S n·z = R(z) (19)

and we can conclude :
∀ω ∈Ω,‖Rω−R‖L2(D) = 0 (20)

These developments suggest that the total error is proportional to O
(

Nd/2
cut |R̂Ncut |2

)
and numerical

tests prove this conclusions cf. Fig(1). In other words the error decreases with the increasing of the terms
in the wave-number domain (Nk). When using the FFT the number of terms in space (Nx) should also be
equal to Nk. We are interested in cases where L� `c, which results in an enormous Nx. It will usually
lead to situations where the the error is much smaller than we need for our simulations. We would like to
remind the reader that the computational cost of a FFT is O(Nx log(Nx)) and so having an enormous Nx

means that the we are far from the desired scalability.

4 Localization

When the size of the domain, L, is much bigger than the correlation length, `c, it usually leads to
situations that require much more computational power than on single compute can offer. The use of a
distributed-memory cluster is then mandatory. It is well known that in parallel computing minimizing
the number of communications between processors results in better performance. In the FFT method
to generate a random field the question is posed to the whole domain at once, making the distribution
between processors a hard task. The localization method comes to overcome this difficulty, minimizing
communications. It makes possible to each processor to work independently and, in the end, have a single
sample that combines the work of all the processors.

4



0 0.5 1 1.5

L2 Distance

0

5

10

15

20

F
re
q
u
e
n
c
y

Nk10
0

Nk10
1

Nk10
2

FIGURE 1 – Numerical Results of the error for several values of Ncut. Nk the initial number of terms in
the wave-number domain

FIGURE 2 – Example of Ψi function in a 2D subset. The single-colored square in the middle shows the
area not touched by the overlap

Another question that this method addresses is the relation between the error and the size of our
domain. As seen in section 3 the errors for the sample are proportional to the inverse of the domain
size. It means that one cannot choose independently the size L and the error level (εh and εω). Splitting
this problem in several sub-problems this issue can be solved. If we are able to sample a part, L

P , of the
domain at a time and, in the end, glue the parts together each part will need a number of terms N that is
proportional to L

P and not the original L. It results in an enormous saving of computational effort since
the total number of terms needed to generate the sample decreases drastically.

The correlation function usually has a very strong property called the long distance uncorrelation.
This property suggests that one point is only affected by the values on its neighborhood up to a certain
distance, usually a few times `c. Since in our cas L� `c we should be able to use this property to divide
our domain in several, independent, sub-domains. In the generation methods presented so far this is not
the case. Every point, no matter how distant, has its contribution taken into account in the calculation of
every other point.

The idea now is to take subsets Di ⊂D that have a non-zero overlapping zone. We will then generate
the samples independently over each subset. The challenge is to combine these independent fields in one,
statistically homogeneous, continuous field.

In each subset Di we will define a function Ψi(x) that values :

Ψi(x) =
1 if x in the interior of the overlapping zone√

ψi(x) if x on the overlapping zone
0 if x in the exterior of the overlapping zone

(21)

The functions inside the overlapping zone, ψi(x), are partitions of unity and assure the transition
from one subset to another. An example of such a function Ψ in 2D domain can be seen in Figure (2).
The next subsections will show how using these Ψi functions we can combine several independent fields
generated in Di in one statistically homogeneous sample in D.
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4.1 Combining d-dimensional subdomains

To combine I independent d-dimensional samples ui, N (0,1), over the overlap zone the steps are :

Step 1 (Definition of the domain decomposition and the overlapping area) Let (ψi)i∈I a family of par-
titions of unity :

∀x ∈ D,∑
i∈I

ψi(x) = 1 (22)

(23)

We note Di = {x ∈ D,ψi(x) 6= 0} and D̂i, j = Di∩D j is the overlapping zone. We introduce the overlap
length :

`i, j
c = αi, j`c = inf

(x,y)∈D̂2
i, j,

ψi(x)=1,ψi(y)=0

{||y− x||} (24)

Step 2 (Localized random field’s expression) Let ∀i ∈ I,ui a random field generated over Di. There is
∀i ∈ I,ui = 0 over D\Di and ui is uncorrelated with u j for i 6= j. To ensure the regularity of the localized
random field, we compute u` in this fashion :

u` = ∑
i∈I

√
ψiui (25)

A graphic example of the method applied to a 2D domain can be seen in Figure 3.

FIGURE 3 – Generation of four independent fields (left), multiplication by the square root of the partitions
of unity (center), summation overlapping areas (right).

4.2 Statistics on the overlap zone

The moments of order zero and one remain unaltered :

∀x ∈ D,E[u`(x)] = E

[
∑
i∈I

√
ψi(x)ui(x)

]
= ∑

i∈I

√
ψiE[ui(x)] = 0

∀x ∈ D,E[u2
`(x)] = ∑

(i, j)∈I2

√
ψi(x)

√
ψ j(x)E[ui(x)u j(x)] = ∑

i∈I
ψi(x)E[ui(x)2] = 1

Lets take a look in how localization distorts the estimator R. We will focus on the estimator R` where
∀z ∈ D,R`(z) = 1

|D|
∫

x∈Dz
E [u`(x)u`(x+ z)]dx.
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∀z ∈ D,R`(z) =
1
|D|

∫
x∈Dz

E

[
∑

(i, j)∈I2

√
ψi(x)ψ j(x+ z)ui(x)u j(x+ z)

]
dx (26)

=
1
|D|

∫
x∈Dz

∑
(i, j)∈I2

√
ψi(x)ψ j(x+ z)E[ui(x)u j(x+ z)]dx (27)

=
1
|D|∑i∈I

∫
x∈Dz

√
ψi(x)ψi(x+ z)E[ui(x)ui(x+ z)]dx (28)

The equation (28) is obtained because the fields ui and u j are generated independently for i 6= j so :
E[ui(x)u j(x+ z)] = E[ui(x)]E[u j(x+ z)] = 0. For an arbitrary i ∈ I, the Equation (28) is obtained because
the statistical properties are the same for all the subdomains. The correlation function is affected by a
factor

√
ψi(x)ψi(x+ z). This term should go to one as long as ψi(x) does not fluctuates a lot over the

distance of one or some correlation lengths `c. The expression of the difference between R` and R ;
∀z ∈ D,, can be expressed as :

R`(z)−R(z) =
1
|D|∑i∈I

∫
x∈Dz

(√
ψi(x)

(√
ψi(x)+ εψi(x)(z)

))
E[ui(x)ui(x+ z)]dx−R(z) (29)

=
1
|D|

∫
x∈Dz

(
∑
i∈I

ψi(x)

)
E[ui(x)ui(x+ z)]dx−R(z)

+
1
|D|

∫
x∈Dz

∑
i∈I

√
ψi(x)εψi(x)(z)E[ui(x)ui(x+ z)]dx (30)

=
1
|D|

∫
x∈Dz

∑
i∈I

√
ψi(x)εψi(x)(z)E[ui(x)ui(x+ z)]dx (31)

Where εψi(x)(z) is the difference εψi(x)(z) =
√

ψi(x+ z)−
√

ψi(x). Making a Taylor-Lagrange expansion
around x of

√
ψi(x+ z) a well-known result ensures :

∀z ∈ D,
∣∣εψi(x)(z)

∣∣≤ sup
x∈D

∣∣∣∣∇√ψi|x
∣∣∣∣ ||z|| (32)

Remarking, ∀i ∈ I,∀x ∈ D,0≤
√

ψi(x)≤ 1, ∀i ∈ I, there is Mi such that :∣∣∣√ψi(x)εψi(x)(z)
∣∣∣≤Mi||z|| (33)

If we stablish a zcut where ∀||z||> zcut ,R(z)u 0. Finally we can conclude :

||R`−R||L∞(D) ≤∑
i∈I

Mi sup
||z||≤zcut

||z||R(z) (34)

The optimal choice of ψ is not discussed in this article. Considerations about smoothness of the genera-
tion field should be taken into account. In our examples we used ψi = ∏

d
n=1

1
2

(
1+ cos

(
π

2

(
1+ x∗n

α

)))
,

where x∗n is the coordinate that measures the distance on the overlap in each n-direction. It values x∗n = 0
when it is on the interior limit of the overlapping zone and x∗n = α on the exterior limit.

4.3 Numerical Results

We are now interested at what happens when we perform calculations in several processors. When
paralelizing we would like that two times more processors could compute a domain that has two times
more points (keeping the density of points constant). The linear scalability of the FFT method with
localization suggest that it can be possible. The challenge here is that the communication between the
processors have to follow the linear scalability. In the implementation the MPI standard was used because
we aim problems that are big enough to need a distributed memory architecture. At each iteration we
multiply by two the number of points on the grid and we double the number of processors. Results show
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FIGURE 4 – Weak Scaling without localization and with localization 3D cases. The number on each point
is the number of processors.

the generation time, from reading the input to writing the output files, in Figure 4. The shadow indicates
the span between the best and worst case in each simulation.

We chose to test on the 3D case because it is where the real challenge is. In 3D the computational
cost grows rapidly and, when using several processors, the interface between processors is larger.

The difference between the problem using the localization approach and the standard are clear. An
expected and yet remarkable phenomena is the plateau revealed in the localization method. It suits the
methods to solve large scale problems. We tested the FFT with localization CentraleSupélec cluster,
Igloo, (Intel Xeon X7542 2.66Ghz/800 cores) and with 512 processors (8x8x8 processors grid) we are
able to generate a 300 `c cube in 16 seconds (Figure 5).

FIGURE 5 – Simulation of a 300`c×300`c×300`c field over 512 Processors.
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