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Résumé — We present a systematic approach to deal with the modeling and analysis of the cracked
rotating shafts behaviour. We begin by revisiting the problem of modelling the breathing mechanism of
the crack. Here we consider an original approach based on the form we give to the energy of the system
and then identify the mechanism parameters using 3D computations with unilateral contact conditions
on the crack lips. A dimensionless flexibility is identified which makes the application of the approach
to similar problems straightforward. The additional flexibility due to the crack is then introduced in a
simple and comprehensive dynamical system (2 DOF) to characterize the crack effects on the dynamical
response of a rotating shaft. Many results could help in early crack detection.
Mots clés — cracked shafts breathing crack rotordynamics instability

1 Introduction

In dealing with cracked shafts mechanics, we mainly distinguich two aspects :

1. The first one is to model the effects of the crack presence on the static behaviour of the shaft.
When the shaft rotates, the crack opens and closes (breathes) and the resulting additional flexibi-
lity should be identified for all angular positions. The modeling and identification of this breathing
mechanism are crucial since it measurably affects the dynamics of the system.

2. The second is the examination of the vibrational response of the system to clearly identify the
effects of the crack presence and suggest parameters that could help in developping an efficient
methodology for early crack detection.

The approach presented in this article inherits from the EDF−LMS modeling procedures. We concentrate
the additional flexibility related to the crack in one single parameter (function) that depends on the system
response (nonlinear). But, in this work, we identify a cracked beam element which is different from the
nodal representation adopted in [1]. Second, we present a dimensionless flexibility due to the crack wich
is dependent only on the crack properties (geometry, relative depth) that can be used straightforward and
without any additional 3D computations in similar problems. And, to make this approach generic and
easy to adopt by engineers and scientists, we give an explicit polynomial function that approximates the
additional flexibility due to the cracked transverse section. Thus, the procedure of identification could be
skipped by those who will have adopted the approach described here, and this represents an important
saving of time for scientists and powerplant operators. Our main objective in this article is to present a
methodological approach in dealing with cracked shafts.

2 Breathing mechanism modeling and identification

The three-dimensional FE model considered is
that of a cylinder of axis (oz), radius R, length L,

containing, at midspan, a cracked transverse
section, cf. Figure 1. The structural element,
clamped at its both ends (z = 0 and z = L), is

subjected at z =
L
2

to a force F = (Fξ ,Fη). FIGURE 1 – The current 3D model
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Let W ∗ be the total elastic (complementary) energy of the system. According to [1] and [2], W ∗ can
be put in the form :

W ∗(F) =W ∗s (F)+w∗c(F) (1)

where W ∗s denotes the total elastic energy of the uncracked structure under the loading F, and w∗c(F)
the additional elastic energy due to the presence of the crack. Some properties of the problem energy will
make easier the identification of the flexibility due to the crack presence ([1], [2]).

Property 1 :

w∗c is strictly convex and positively homogeneous of degree 2 :

∀λ ≥ 0 , w∗c(λF) = λ
2w∗c(F) (2)

Property 1 comes from the fact that the contact surface between the crack lips (and therefore the addi-
tional flexibility) does not depend on ||F || but only on the direction of F. It should be noticed that an
essential hypothesis for obtaining propertie 1 is that the gap between the lips of the crack is zero in the
unstressed configuration which distinguishes the crack from a notch.
A raisonable choice for w∗c is to consider a quadratic form of F. We write :

w∗c(F) =
1
2

sc(F)||F||2 (3)

sc(F) represents the additional flexibility of the structure due to the crack presence to be identified
by means of 3D computations.

FIGURE 2 – Dimensionless flexibility as a function of loading angle for different crack depth

With Property 1, the problem of identification of the function w∗c on R2 is reduced to the identification
of the flexibility function sc(Φ) on the interval [0,2π] by considering :

F = (Fξ ,Fη) = (cos(Φ),sin(Φ)) ,||F ||= 1 and Φ = atan(
Fη

Fξ

)

The total elastic energy of the system could be written :

W ∗(F) =
1
2

s(Φ)||F||2 = 1
2
{s0 + sc(Φ)}||F||2 (4)

where s0 is a constant representing the bending flexibility of the uncracked shaft. Instead of iden-
tifying the function sc(Φ), it would be more advantageous to identify a parameter that lets appear the
intrinsic properties of the crack. Thus, a dimensionless coefficient that only depends on the crack para-
meters (geometry, depth, etc...) would be more useful to identify. This aims to make our approach generic
and easily exploitable in similar configurations. we write :

W ∗(F) =
1
2

s(Φ)||F||2 = 1
2

{
s0 +

L2

48πER3 H(Φ)

}
||F||2 (5)

Given a crack geometry and a loading direction Φ , the dimensionless flexibility H represents a
measure of the open (closed) parts of the crack. E is the Young’s modulus of the material.
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2.1 Identification procedure of the dimensionless flexibility H :

Three-dimensional computations have been carried out to determine H for the case presented in
Figure 1. The structure contains a crack with a rectilinear tip at midspan. The clamped shaft element
is subjected to F and the angle Φ is varied in [0◦,360◦] at a rate of a loading case every 5◦ and, thus,
a total of 72 loading cases where carried out. The identification of H also requires the realization of
similar computations on the uncracked structure. Knowing the forces (F) and the displacements (u) at
the cracked section, the formula of Clapeyron makes it easy to evaluate W ∗s and W ∗ of the uncracked and
the cracked structures, respectively ([3], [4]). w∗c is obtained by :

w∗c(Φ) =W ∗(Φ)−W ∗s (Φ) , ∀Φ ∈ [0,360] (6)

then H is computed using :

H(Φ) = w∗c(Φ)
48πER3

L2 , ∀Φ ∈ [0,360] (7)

Figure 2 shows that for cracks with a rectilinear tip and a relative depth a
R < 1.0, the crack is fully

open when Φ = 0◦ (or 360◦) and closes completely on an interval arround Φ = 180◦. In fact, despite the
rotation, shallow cracks may remain totally into the compressed half-section before going into the taut
zone. This interval reduces to Φ = 180◦ when a

R = 1. Between these loading cases, the crack is partially
open. The evolution from totally open to totally closed crack is smooth and regular.

When a
R > 1.0, the crack can not be fully closed since it can not be completely contained in the

compressed half-section for any Φ ∈ [0,360◦]. In this case, H(Φ) > 0 and its lowest value is reached at
Φ = 180◦.

FIGURE 3 – Maximum of dimensionless flexibility
as a function of crack depth

In Figure 3 we present the maximum of additio-
nal flexibility (max(H)) as a function of the relative

depth of the crack ( a
R). By adopting a polynomial

fitting we wrote :

max(H)(
a
R
) = Pa(

a
R
) =

7

∑
i=0

ci(
a
R
)i (8)

Also, we have found that a good fitting of the va-
lues of H would be :

H(Φ) = max(H)

∥∥∥∥sin(
Φ+π

2
)

∥∥∥∥Qa(
a
R )

= Pa(
a
R
)

∥∥∥∥sin(
Φ+π

2
)

∥∥∥∥Qa(
a
R )

(9)

with Q a polynomial function of a
R given by :

Qa(
a
R
) =

7

∑
i=0

qi(
a
R
)i (10)

In Figure 2 we can see that the polynomial approximation of H using (9) produces an excellent fitting
for cracks with rectilinear tip and width a

R ≤ 1.0. We can easily extend the approach for deeper cracks
by considering a formula similar to (9) and adding a constant term (which is min(H) = H(Φ = π)) that
increases with the crack depth. In this first article devoted to this new systematic approach, we want
to focus on shallower cracks since we aim to characterize cracks effects before they become of critical
depth.

2.2 Constitutive equations

As mentioned earlier, our objective is to build a beam model based on realistic 3D model to be ex-
tensively used in the nonlinear dynamics of cracked rotating shafts. The nonlinear constitutive equations
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at the cracked section (midspan) are obtained by differentiating W ∗ with respect to F. we write :

u =

uξ

uη

= S(Φ)

Fξ

Fη

= {S0 +Sc(Φ)}

Fξ

Fη

=

s0 + sc(Φ) −1
2 s′c(Φ)

1
2 s′c(Φ) s0 + sc(Φ)

Fξ

Fη

 (11)

where S0 and S are, respectively, the flexibility matrices of the uncracked and cracked shaft.

s′c(Φ) =
dsc(Φ)

dΦ
=

L2

48πER3
dH(Φ)

dΦ
=

L2

48πER3 H ′(Φ) (12)

Finally, at the cracked section we have :

uξ

uη

 =


s0 0

0 s0

+
L2

48πER3


H(Φ) −1

2
H ′(Φ)

1
2

H ′(Φ) H(Φ)



Fξ

Fη

 (13)

The extradiagonal terms show that the crack introduces coupling between the transverse directions
of the shaft element. In numerical codes for structural analysis, we usually prefer a relation of the form :Fξ

Fη

= {S(Φ)}−1

uξ

uη

= K(u)

uξ

uη

= {K0−Kc(u)}

uξ

uη

 (14)

where K0 and K are, respectively, the stiffness matrices of the uncracked and cracked shaft, with

K0 =

(
k0 0
0 k0

)
and k0 =

1
s0

(15)

Kc(u) represents the stiffness loss due to the crack and depending on the problem unknowns u
which makes the problem nonlinear. Actually, for a given loading direction Φ, the problem is linear with
different stiffness for each angle Φ : The loading angle Φ is equal to the response angle ψ defined by :

ψ = atan(
uη

uξ

)

By writting Kc(u) in the form :

Kc =
48πER3

L2

kξ ξ (ψ) kξ η(ψ)

kηξ (ψ) kηη(ψ)

 (16)

we obtain :

kξ ξ (ψ) = kηη(ψ) =
R
L
− 4R(L+RH(Φ))

(4R2 H(Φ)2 +8LRH(Φ)+R2 H ′(Φ)2 +4L2)
(17)

kξ η(ψ) =−kηξ (ψ) =− 2R2 H ′(Φ)

(4R2 H(Φ)2 +8LRH(Φ)+R2 H ′(Φ)2 +4L2)
(18)

We can notice that

kξ η(ψ) =−1
2

dkξ ξ

dψ
=−1

2
k′

ξ ξ

Also, when H(Φ) = H ′(Φ) = 0 (no crack), we have :

kξ ξ (ψ) = kξ η(ψ) = 0

Like Sc, Kc is a skew−symmetric matrix. Also, we can easily notice that the stiffness matrix of
cracked transverse section is completely identified by one single function kξ ξ and its derivative.
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Finaly, at the cracked transverse section, we have the relation :

Fξ

Fη

=


k0 0

0 k0

− 48πER3

L2


kξ ξ (ψ) −1

2
k′

ξ ξ
(ψ)

1
2

k′
ξ ξ
(ψ) kξ ξ (ψ)



uξ

uη

 (19)

FIGURE 4 – Stiffness loss for
a
R
= 1 FIGURE 5 – Validation of the procedure for

a
R
= 1

with k0 =
192EI

L3 =
48πER4

L3 the bending stiffness of a biclamped uniform beam. I =
πR4

4
is the

quadratic moment of inertia.
Figure 5 shows an exellent agreement between the 3D results and the beam model. Although the

3D computations consume less than 10 minutes of CPU time, having a reliable and robust beam model
is always preferable especially for the examination of the nonlinear dynamics of the system as will be
discussed in the next section.

3 Nonlinear dynamics of a rotating shaft with a breathing crack

This section is devoted to the examination of the vibrational response of a De Laval rotor (Figure 6)
with the breathing mechanism identified in the first part of this article. To build a systematic approach,
we need to remove all the non essential assumptions. We want our methodology to be applicable in the
most general configurations. In fact, the new generation of turbines are light weight and often operated
at very high frequencies (many times the first critical speed) resulting in hight levels of vibrations. Also
in vertical axis machines, the machine self-weight is not the dominant loading. In such configurations,
hypothesis of weight dominant situation could not be accepted and we need a robust model capable of
handling all possible situations like transient conditions of starting up, coasting down or passing throught
resonnance rotating frequencies. In these situations, the vibration levels effects could be the same order
of magnitude than the self-weight deflection.

(a) (b)

(c) (d)

FIGURE 6 – Dynamical system parameters
In the most general case, when considering the

modeling of breathing mechanism of the crack in
a rotating shaft, we need at each time instant to be
able of answering two questions :

1. First, which part of the transverse section is
under tension ?

2. Second, where is the cracked part of the
transverse section with respect to that taut
zone ?

To answer the first question, we need to know the
position of the transverse section center G. The po-
sition of the crack is given by the rotation angle Ωt.
Knowing (U,V ) of G and Ωt, we can define in a
unique way the stiffness of the structure (Figure 6).

In fact,
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ψ = atan(
uη

uξ

) = γ−Ωt = atan(
V
U
)−Ωt (20)

In the rotating, shaft fixed frame Oξ η , we have established the relation :

Fξ

Fη

=


(

k0 0
0 k0

)
− 48πER3

L2


kξ ξ (ψ) −1

2
k′

ξ ξ
(ψ)

1
2

k′
ξ ξ
(ψ) kξ ξ (ψ)



uξ

uη

 (21)

To shift to the inertial frame Oxy, we write :

u =

uξ

uη

=

 cosΩt sinΩt

−sinΩt cosΩt

U

V

= (T (Ωt))U (22)

Analogously for the forces, we write :

F =

Fξ

Fη

=

 cosΩt sinΩt

−sinΩt cosΩt

Px

Py

= T(Ωt)P (23)

Thus :

P = T−1(Ωt)F (24)

Inserting these transformations of forces and deflections into equation (21), we obtain the stiffness
matrix K(U) expressed in the inertial frame.

K(U) = T−1(Ωt)K(u)T(Ωt) (25)

The construction process of the stiffness matrix K(u) of the cracked shaft element lead to a skew-
symmetric matrix :

K(u) =−Kt(u) (26)

which is invariable by rotation. We have :

K(U) = K(u) (27)

Now we can write the dynamical equilibrium equations of the DeLaval rotor of Figure 6 as given by
the Principal of Virtual Power :

Mü+Du̇+K(u)u̇ = P0 +Pu (28)

or :

m

m

Ü

V̈

+

D

D

U̇

V̇

+
48πER3

L2


R
L
− kξ ξ (ψ)

1
2

k′
ξ ξ
(ψ)

−1
2

k′
ξ ξ
(ψ)

R
L
− kξ ξ (ψ)


U

V

=

mg

0

+εmuΩ
2

cos(β +Ωt)

sin(β +Ωt)


(29)

P0 is the disc weight and Pu is the umbalance forces due to the umbalance mass mu at ε from G
(Figure 6).

D = 2dmw0 is the viscous damping coefficient, d the reduced (dimensionless) damping coefficient

and w0 =
√

k0
m the natural frequency of the uncracked structure.

The shaft orbits presented in Figure 7 show that the superharmonic resonance phenomena presence
when the rotating frequency passes through entire divisions of the critical speed w0. When ξ ≈ Ω

n , the
vibratory amplitude of nth harmonic reaches higher levels, cf. Figure 7. At starting up, coasting down the
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mu = 0 mu =
m

104
, β = 0 mu =

m

104
, β =

π

2
mu = 0 mu =

m

104
, β = 0 mu =

m

104
, β =

π

2

FIGURE 7 – Examples of the rotor orbits and amplitude spectra, ξ = Ω

w0
, a

R = 1, d = 0.03

observation of this superharmonic resonances at subcritical rotor frequencies represents a good indication
of crack presence.

In the normal operating conditions, the turbines are rotating at constant frequency, and here a crack
growth could be depicted by monitoring the evolution of the static deflection and the levels of the first and
second harmonics (today’s vibration minus vibration a fortnight before), cf. Figure 8. These vibratory
parameters are very reliable for early detecting the presence and propagation of cracks.

FIGURE 8 – Evolution of vibratory parameters with crack depth, ξ = 1.50, d = 0.03

4 Stability analysis

FIGURE 9 – Stable and unstable (hatched) zones
evolution for d = 0.02 and d = 0.03

In this work, the stability of the cracked shaft of
Figure 6 containing a straight tip crack at mid-span
is analyzed using the Floquet method which is easy
to implement numerically. Results for viscous dis-
sipation d ≈ 2 % and d ≈ 3 % , cf. Figure 9, show
two principal instability areas : the first is located
around the exact resonance (ξ = 1) and the second
area (around ξ = 2) corresponds to subharmonic
resonance.
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It’s important to note that even for weak viscous damping (d ≈ 2 % ) the stability of the cracked
shaft is only slightly affected. When d ≈ 5 % the zones of instabilities disappear completely for cracks
with depth going to half the transverse section ( a

R = 1). A third zone of instability has been observed by
many authors at the subcritical speed range (ξ < 1.0) when considering a switching crack model ([5])
or in the case of very deep breathing cracks and low dissipation ([6]). But for more realistic operating
conditions like in this article, as noticed by [7, 2], this zone is free of chaotic, quasi-periodic or subhar-
monic response. Since for real machines the viscous damping is ≈ 3%, we can say that the effect of one
propagating crack begins to threaten the stability only at important depth

a
R
> 0.85 and this on a nar-

row interval around Ω≈ w0 and Ω≈ 2×w0. The passage through these frequencies must be done with
the greatest care especially when it comes to turn off the machines after a long period of uninterrupted
service.

5 Conclusions

In this article we have presented a systematic approach in dealing with the problem of modelling
cracked rotating shafts. The breathing mechanism identification is the crucial step in the process and has
to be made with the greatest care. To make this approach generic, we have opted for the identification of
a dimensionless flexibility so that it can be used in similar configuration.

Once the additional flexibility due to the crack identified, we have introduced it in a 2 dof dynamical
system of a DeLaval rotor with a breathing crack at midspan. All the typical features related to cracked
rotors have been observed. We have noticed the superharmonic resonnace phenomena when the machine
is operated at an entier division of the first critical frequency. Also, we have found that the increase
of the vibrational levels of the first and second superharmonics accompagned by the growth of static
deflection are reliable indicators of a propagating crack. We hope that the clarity of the different steps
of the methodology presented here and the simplicity of its numerical implementation will make it the
standard approach in dealing with cracked rotating shafts.

The next step will be to consider the case of multiple cracks affecting the same rotor at different
positions along its axis. In this case, it would be wise to construct a beam-like finite element based on
the development presented in this article. The new finite element will have a crack at midspan and will
be inserted at the appropriate locations between classical beam elements to model a cracked region of
the rotor. And this is what we are in the process of developing at this time by following the approach
described by [4].
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