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Résumé — We will show in this presentation a new implementation of a multi-scale, multi-model cou-
pling algorithm, based on the Arlequin framework. We propose a parallelization scheme for the construc-
tion of the coupling terms between the models, resulting into a scalable algorithm on large computer clus-
ters. As an application example, we will consider a system composed by an homogeneous, macroscopic
elasto-plastic model and an anisotropic polycrystalline material model.
Mots clés — Model coupling, multi-scale models, Arlequin method, FETI, polycrystalline material mo-
del, homogenization

1 Motivation

FIGURE 1 – Example of a micro scale heterogeneous polycrystalline domain coupled to a homogeneous
macro scale model.

We will focus here on the study of polycrystalline materials through the usage of numeric multi-
model coupling methods. This class of materials include most metals and many types of ceramics, which
are composed by several grains with different crystalline orientations. They are of high interest to many
fields of engineering and industry, due to their usage in systems that sustain extreme conditions. Due to
their complexity, many different scales and models are associated to them. Here, we interested in two of
them (Figure 1) : a micro scale, where a heterogeneous elasto-plastic model is considered, and a macro
scale, with a homogeneous model. Simulations can focus on a single scale, but this entails a trade-off
between the numerical cost of the former, limiting it to small applications, and the lack of detail of the
latter when analyzing phenomena such as stress localization, fracture or fatigue.

The motivation of this work is to identify the properties of the macro scale model knowing those
of the heterogeneous and micro scale model. From the numerical point of view, one can perform a
homogenization [11][7] on the multi-scale system. Such methods are very sensitive to the boundary
conditions and to the ratio between the characteristic scales of the models, though, and can introduce a
bias to the resulting homogenized macro scale tensor if this ratio is too high, due to the effects of the
macro scale boundary conditions on the micro scale model. In the cases where a stochastic model is used
to represent the micro scale, this bias is still present even after using an infinite number of Monte-Carlo
realizations [1]. It is possible to use periodic boundary conditions to reduce it, but this method does not
work optimally for micro structures that are not themselves periodic. In [1], an algorithm based on the
Arlequin method [1][3] is proposed to reduce this bias, in the context of a micro scale stochastic model.

This work benefited from French state funding managed by the National Research Agency under
project number ANR-14-CE07-0007 CouESt.
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FIGURE 2 – Domains used in the Arlequin framework. The model domains are Ω1 and Ω2, the overlap-
ping domain is Ω12, and the gluing zone (marked in gray) is ΩC.

2 Outline

We will show in this presentation a scalable implementation of the Arlequin algorithm, developed to
be, ultimately, used in the context of the numerical homogenization proposed in [1]. It parallelizes not
only the resolution of both macro and micro systems, but also the coupling step - which is not usually
parallelized, breaking the scalability as a whole. More precisely, we will present a new, parallel inter-
section search algorithm (needed by the coupling construction step) and a scalable implementation of a
solver for the Arlequin method, based on the FETI method [6, 2]. Before we start, we should note that,
while we focus here in the Arlequin framework, the parallelization scheme presented here is applicable to
other couping methods following similar formulations, such as the non-overlapping domain decomposi-
tion methods [4]. As an application example, we will study a macroscopic system with an homogeneous
elasticity model coupled to a microscopic system with an heterogeneous, anisotropic elasticity model.

3 Arlequin formulation

Consider two models, each associated to bounded regular domains Ω1 and Ω2, and which overlap
over a region Ω12. The latter is decomposed into two non-overlapping regions, Ω12 = ΩC∪ΩF , with ΩC

defining the gluing zone between the two models, and effectively serving as the mediator between them.
Figure 2 shows the model domains. Let us note as W1 and W2 the functional spaces associated to these
models, and as M a functional space associated to the mediator domain. The Arlequin formulation of the
coupled problem can be written then as follows : find (u1,u2,Φ) ∈W1×W2×M such that

a1 (u1,v1)+ c(Φ,v1) = `1 (v1) , ∀v1 ∈W1; (1a)

a2 (u2,v2)− c(Φ,v2) = `2 (v2) , ∀v2 ∈W2; (1b)

c
(

ψ,u1−u2

)
= 0, ∀ψ ∈M, (1c)

In Equation (1), al and `l are the internal and external works associated to the model l, weighted in such
a way to guarantee the energy partitioning between the models over the coupling region (see [3] for
details). The weak formulations of the models are also modified by adding a coupling operator c(·, ·) and
a Lagrange multiplier Φ, defined on the mediator space. The third equation guarantees that the solutions
u1 and u2 are continuous under the coupling operation. c(·, ·) is defined as

c(Ψ,Φ) =
∫

ΩC

κ

(
ε(Ψ) : ε(Φ)+

1
e2 Ψ ·Φ

)
dΩ. (2)

The domains Ω1 and Ω2 can be discretized by associating to them, respectively, the meshes T1 and T2.
Similarly, the domain ΩC can be discretized by a mesh TC, but in most cases it is more convenient to
represent M using a mediator mesh M different from TC. This mediator mesh can be, for example,
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formed by the ensemble of elements of one of systems’ meshes that intersect the domain ΩC. Using this
discretization, the formulation (1) can be rewritten asK1 0 CT

1
0 K2 −CT

2
C

1
−C

2
0

u1
u2
Φ

=

F1
F2
0

 . (3)

Following standard notation, K
l

and F l are the tensors and vectors representing the internal and external
virtual works of the model l.

4 Coupling construction and intersection search

(a)
(b)

FIGURE 3 – (a) Intersection between two elements Em ∈M (blue) and El ∈ Tl (red), corresponding to
a non-zero coupling term Cl

i, j. The intersection I (gray) does not follow the geometry of either of these
two meshes, and thus it must be triangulated to allow the calculation of the coupling term ; (b) example
of an intersection mesh “chunk” generated by our algorithm.

The coupling tensors C
l

in Equation (3) are rectangular matrices, with each element (i, j) given by
applying (2) to the corresponding form functions :

Cl
i, j

=
∫

Ωc
12

κ

(
ε(νm

i ) : ε

(
ν

l
j

)
+

1
e2 ν

m
i ·νl

j

)
dΩ, (4)

νm
i and νl

j are form functions associated respectively to the coupling region and the model l. These form
functions are defined on different spaces, and are associated to incompatible meshes. A common mesh,
upon which the form functions νm

i and νl
j can be projected, must be defined to evaluate the coupling

matrices using Equation (4). An example of such a mesh is the mesh Il , defined by triangulating the
intersections between the meshes Tl and M (Figure 3).

Several serial search algorithms for two meshes exist in the literature, organizing the bounding boxes
of the elements into hierarchical data structures [9], or using the neighbor information and advancing
front methods to reduce the number of operations [5]. In our case, we also want to restrict the intersections
to the mediator domain ΩC, which effectively translates into finding the intersections between three
meshes : Tl , M and TC.

We can take advantage of this difference to parallelize the intersection search. Essentially, we can use
the mesh TC to partition the intersection search into smaller problems. For each element EC ∈ TC, two
patches formed by the elements of Tl and M overlapping EC can be constructed (Figure 4). The intersec-
tion search problem is then reduced into |TC| smaller intersection problems, which can be solved using
serial intersection search methods. Furthermore, since the mesh TC has no physical system associated to
it, we can choose its element size and partitioning in such a way to better distribute these smaller searches
over the processors (see Figure 5 for the strong scaling of the intersection search and construction using
this algorithm).
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FIGURE 4 – Graphical representation of our intersection search algorithm. For each element EC from the
coupling mesh TC, two mesh “patches” are built, and then the intersections between these meshes are
constructed.
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(b)

FIGURE 5 – (a) Intersection search and (b) intersection construction strong scaling, wall time vs. number
of processors.

5 Arlequin / FETI solver

The system (3) can be solved as a monolithic problem, but this approach has the limitation of not
allowing the usage of the proper solvers of the super-imposed models. One can think, for example, of
the coupling between models such as linear / nonlinear, deterministic / stochastic, continuum / atomistic
... . Some works have been proposed to solve this problem, adapting domain decomposition methods
such as the FETI [6, 2] or the LATIN [8] methods. In the context of the Arlequin problem, each model
corresponds to a different domain of the decomposition, and the coupling to the interface terms.

We focus here on a Arlequin solver based on the FETI method, presented in ref. [2]. In this context,
the FETI method essentially consists on solving each model inside its domain, without the coupling
effects, and then calculating the coupling correction. The final solution is

u1 = u0
1−K−1

1 CT
1

Φ, (5)

u2 = u0
2 +K−1

2 CT
2

Φ, (6)

where u0
1 and u0

2 are the solutions of the decoupled models, K
l
u0

l = F l , l = 1,2. The Lagrange multiplier
Φ is obtained from the system(

C
1
K−1

1 CT
1
+C

2
K−1

2 CT
2

)
·Φ =

(
C

1
u0

1−C
2
u0

2

)
. (7)

The system (7) can be solved iteratively using an iterative algorithm, such as the Conjugate Gradient
(CG) method. Explicitly assembling the system matrix, though, poses a serious scalability problem to
this algorithm, due to the presence of the inverse matrices K−1

l
. These matrices are dense, and hence their

explicit construction in a parallel algorithm causes a performance bottleneck due to the communications
between the processors.
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In our implementation of the Arlequin / FETI solver, we avoid this problem by exchanging each ap-
plication of a term C

l
K−1

l
CT

l
by a multiplication by CT

l
, a call to the model l’s solver, and a multiplication

by C
l
. This has also the advantage of allowing us to naturally use external solvers without being intrusive.

More details on the resolution of Equation (7) - mainly concerning the case where one of the models
has a singular matrix - can be found in [6]. A full description of our implementation of the Arlequin
/ FETI solver, with a detailed analysis of the numerical effects on the CG algorithm and the treatment
of the singular matrix cases, is presented in [10], which is under preparation. The resulting algorithm,
together with other numerical optimizations, has a good weak scaling, as we can see from black curve in
Figure 6, which presents the number of iterations of the Arlequin / FETI solver for a traction test, as a
function of the number of elements of the mesh T2 (the other curves represent less optimized algorithms).

FIGURE 6 – Weak scaling for different implementations of the projected CG algorithm : number of
iterations until convergence, for different numbers of elements for the mesh T2.

6 Application example

For an application test, we considered the coupled fissure test, with the meshes shown in Figure 7.
The macroscopic system is described by an homogeneous 3D linear elasticity model, with a Young’s mo-
dulus E = 200 GPa and a shear modulus µ= 80 GPa. The corresponding domain Ω1 is represented by the
mesh T1 (Figure 7a), with |T1| ∼ 3.4 ·104 elements. Its leftmost side is clamped, while displacements on
right side holes, on the~̂z and−~̂z directions. The microscopic system is described by an heterogeneous 3D
anisotropic linear elasticity model, with physical parameters c11 = 198 GPa, c12 = 125 GPa, c44 = 122
GPa. Its domain Ω2 (Figure 7b) is divided into 250 crystals, each with its own random anisotropy direc-
tion following an uniform direction distribution. The corresponding mesh has |T2| ∼ 7.2 ·106 elements.
This model is located at the fissure junction of the macroscopic mesh T1, and both meshes are coupled
by the region marked in Figure 7c, with a coupling mesh with |TC| ∼ 1.1 · 103 elements. Overall, the
domains were meshed in such a way that the mesh T1’s element length is ∼ 10× smaller near the fissure
junction than on the outer region, while the mesh T2’s element length is ∼ 10× smaller than the smallest
element length of T1.

The results are presented in Figure 8, where we see that the displacements conditions on the ma-
croscopic model result on a coherent deformation and von Mises stress in the microscopic model. The
simulation was run on 96 processors, and converged after 41 iterations, with a wall time of 1073.90s
.Most of this time (984.17s, or 91.6% of the time) was spent by the (several) calls to the solvers of
the two different models, indicating that the other operations associated to the coupled solver are well
optimized.
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(a) (b) (c)

FIGURE 7 – Meshes used for the fissure test : (a) macroscopic homogeneous model mesh, T1, with the
microscopic, polycrystalline and anisotropic model mesh inset, T2. (b) zoom on the microscopic mesh.
(c) coupling region mesh, TC (black, thick lines). Number of elements in each mesh : |T1| ∼ 3.4 · 104

elements, |T2| ∼ 1.1 ·106 elements.

(a) (b) (c)

FIGURE 8 – Results of the fissure test : (a) deformed microscopic model mesh, T2, (b) von Mises stress
(log scale) of the microscopic model, (c) deformed macroscopic model mesh, T1, and its von Mises stress
(log scale).
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