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Abstract — A novel implementation of the eXtended Finite Element Method that makes use of qua-
dratic elements is discussed. The present formulation is shown to behave fairly better compared to usual
quadratic elements enriched with Heaviside functions in that both the number of unknowns and the
condition number of element matrices considerably decrease with respect to a classical second order
scheme. A representative example demonstrates the capabilities of the proposed approach.
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1 Introduction

There is no question that the quality of eXtended Finite Element (X-Fem) solutions to problems with
discontinuities has dramatically improved in the last decade, nor can it be doubted that there is still a
long way to go.

For instance, most X-Fem implementations rely upon use of either linear triangles/quadrilaterals in
2D or linear tetrahedra/hexahedra in 3D. Aiming to get better performances and higher order convergence
properties the X-Fem approximation could be modifiedto be quadratic. However, despite all expected
beneficial effects of quadratic elements, in published X-Fem literature almost all but a few authors, see
e.g [1, 2, 3, 4], choosenot to be quadratic. The main motivation beyond this choice is that in the present
context a successful implementation of higher order elements is conditional to the possibility that element
matrices created by X-Fem are not ill-conditioned, that in asense is intrinsic to the method itself.

2 X-Fem for discontinuities

Generally speaking, the X-Fem concept can be regarded as a special case of the partition of unity
paradigm [5], the basic underlying idea being the augmentation of the approximation space generated by
standard finite element shape functions. This is obtained inturn via suitable enrichment functions that
incorporate some a priori knowledge about the solution of the problem under consideration. For instance,
in fracture mechanics displacement discontinuities can beintroduced via the generalized Heaviside func-
tion :

H(x) = h(ϕ(x)) =

{

+1 if ϕ(x)≥ 0

−1 if ϕ(x)< 0
(1)

whereϕ(x) is a function that defines the interface position, e.g. typically a signed distance function. At
any pointx of the finite element mesh the displacement approximation isthen obtained as :

uh(x) =
numnp

∑
i=1

φi(x)ai + ∑
j∈NH

ψ j(x)H(x)q j (2)

whereφi(x) andψ j(x) are standard finite element shape functions andnumnpis the number of nodal
points. The degrees of freedom of the regular part of the interpolated displacement field are denoted by
ai , whereas the additional degrees of freedom associated withthe Heaviside enrichment are denoted as
q j . The latter are active on the set of nodesNH whose support is bisected by the interface ; therefore, at
the element level the matrices do not have in general equal dimensions.

In usual X-Fem implementations the functionsψ j that are used to describe the jumps are taken
identical to the shape functionsφi representing the regular part of the displacement field. This is not
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strictly required by the method since for the Heaviside function to be exactly represented it is sufficient
that functionsψ j do comply with the partition of unity property. Likewise, the degrees of freedomq j of
the jumps are usually attached to the same nodal points carrying the unknownsai of the regular part of
the displacement. Once again, this is not a compulsory condition but only a customary choice, probably
originating from the fact that, at least for fracture mechanics problems, most X-Fem implementations
make use of linear elements.

Unlike continuous elements, increasing the order of the standard shape functions in the X-Fem ap-
proximation (2) is not sufficient to guarantee an improvement in performances and convergence proper-
ties. Actually, when considering the Heaviside enrichment, severe ill-conditioning is likely to occur for
elements crossed by an interface whenever the area or volumeratio between the two parts on the opposite
sides of the interface is very small, see e.g. Figure 3. In such cases one of the Heaviside-enriched func-
tions describing the displacement jumps tend to coincide with one standard continuous shape function,
whereby the stiffness matrix becomes rank-deficient.

interface

interface

Figure 1 – interface positions that cause ill-conditioning.

In practical applications there is no way to avoid the occurrence of discontinuities arbitrarily close
to nodes or element sides within the mesh, since by its very definition an X-Fem interface can be arbi-
trarily positioned within a mesh. Special treatments of this pathological situation have been presented
in [2, 3, 6], that make use either of a pre-conditioner to eliminate linear dependencies between standard
shape functions and enrichment functions or rely upon geometric or stiffness weighting criteria to decide
whether to enrich a given node. Unfortunately, the above treatments seems to be not robust enough to let
quadratic lagrangian elements perform well [4].

In view of general industrial applications, where simplicity of model preparation and mesh generation
are essential requirements as much as good accuracy and convergence properties,to be quadraticwith
X-Fem we design elements including corner rotations as degrees of freedom. Such rotations are usually
termed drilling degrees of freedom in reference to their tendency to twist nodes about the normal to the
element surface.

3 Quadratic elements with drilling rotations

Finite element methods designed to include corner rotations have been discussed in many papers
since the 1980s. Earlier works did not succeed in the derivation of elements with an independent rotation
field in the sense of Reissner [7] either due to the presence ofzero-energy modes or to the instability of
finite dimensional formulations despite the well-posedness of the continuum problem.

A consistent variational framework for problems includingrotational degrees of freedom has been
presented by Hughes and Brezzi in [8], where a methodology isprovided to obtain a robust finite element
method that permits the representation of drilling rotations using aC(0) interpolation.

In the following it is summarized the derivation of the quadratic quadrilateral sketched in Figure 2 ;
key points in setting the functional from which the element matrices are obtained are as follows :

1. the stress tensor is not a priori assumed to be symmetric ;

2. the drilling rotation is identified with the component of the infinitesimal continuum rotation normal
to the plane of the element ;
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These conditions are both enforced in weak form using the following functional, see [8] pag 115 :

Πγ(u,θ,Tu) =
1
2

∫
Ω
E(∇u)s

· (∇u)sdΩ+
∫

Ω
((∇u)u

−θ) ·TudΩ−
γ−1

2

∫
Ω

Tu
·TudΩ−

∫
Ω

f ·udΩ (3)

whereE is the 2D plane elasticity matrix,f are the body forces,u is the displacement field,θ andT are the
infinitesimal rotation and stress, and the symbols(·)s and(·)u stand for symmetric and skew-symmetric
part of the argument, respectively. Moreover, the constantγ in (3) is a positive penalty parameter that in
linear elastostatics ensures that the discrete variational problem inherits the ellipticity property from its
continuum counterpart.
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Figure 2 – quadrilateral element with drilling degrees of freedom.

The normal rotation field over the quadrilateral is interpolated by the standard bilinear shape func-
tions whereas the in-plane displacement components are approximated using an Allman-like interpola-
tion. In matrix notation one has :

u =

[

u1

u2

]

=
4

∑
I=1

NI (x1,x2)uI = Na (4)

(∇u)s =









ε1

ε2

γ12









=
4

∑
I=1

BI(x1,x2)uI = Ba (5)

(∇u)u
−θ =

4

∑
I=1

bI(x1,x2)uI = ba (6)

uI = [uI
1,u

I
2,θI

3]
T being the displacement vector at nodeI and a the vector collecting all the element

displacement components. The discretized counterpart of the functional (3) that is arrived at reads :

Πh
γ (a,τ) =

1
2

∫
Ω
EBa ·BadΩ+

∫
Ω

baτdΩ−
1
2

γ−1
∫

Ω
τ2dΩ−

∫
Ω

f ·NadΩ (7)

where the parameterτ represents the interpolation for the skew-symmetric stress ; since no continuity is
needed for it, an element-wise constant interpolation is chosen and the unknownτ is condensed out at the
element level. Therefore, the element stiffness matrix is obtained by adding to the usual stiffness matrix
the rank-one correction :

γ
meas(Ω)

∫
Ω
(b⊗b)dΩ (8)

wheremeas(Ω) is the element area.
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4 Numerical example

To demonstrate the current element capabilities a simple problem is considered that consists of a
single element, either a standard serendipity element (Q8)or a quadrilateral with drilling rotations (QD4),
occupying the domain[−1,1]× [−1,1]. The element is cut by an X-Fem interface parallel to one of its
sides and the discontinuity is described via the Heaviside function (1).

The position of the interface on the element is parametrizedthrough the abscissaε (ε = 0 corresponds
to the left side of the element). No boundary condition is imposed on the element, that it is completely
free ; therefore it possesses six rigid-body motions, i.e. the three rigid body motions of the underlying
continuum element plus three extra rigid-body motions due to the presence of the X-Fem interface.

In figure 3 is depicted the condition number of the Q8 and QD4 element stiffness matrices at varying
interface position. The superior performance of the QD4 element, that remains workable for up toε =
1 · 10−7, is immediately recognized whereas the stiffness matrix ofthe Q8 element is already almost
singular forε = 1·10−3.
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Figure 3 – conditioning of element matrices.
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