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Abstract — An h-adaptive methodology dedicated to the simulation of cracked structures due to the

ductile damage is proposed. Cracks are represented using a procedure based on fully damaged elements

deletion. Element size inside the domain is driven by size indicators based on plasticity and damage

variable. A local remeshing based on a 3D bisection technique and local surface mesh enhancement are

applied at a low computational cost. A hybrid field transfer operator is used to keep consistency after

remeshing. The loading sequence is also adapted in order to control element deletion.
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1 Introduction

When a metallic part is formed by large plastic (or viscoplastic) strains, ductile damage is expec-

ted to occur inside zones where the plastic flow is highly localized. When ductile damage occurs, the

propagation of macroscopic cracks induces severe changes of topology and frequent remeshing must be

performed in order to avoid large mesh distortion or element entanglement encountered in a Lagran-

gian formulation. Our work is focused on meshing and remeshing aspects. In this context, a number of

methods have been proposed to represent ductile cracks occurring inside zones where the plastic flow lo-

calizes, such as nodal relaxation and cohesive elements [9], element deletion procedures associated with

a critical damage criterion [3][5], enrichment techniques such as the extended finite element method

(XFEM) [8] based on the addition of an enriched basis into an existing finite element mesh. The present

work deals with the prediction of ductile fracture in metal forming where large inelastic (plastic or vi-

scoplastic) strains take place. A fully adaptive scheme which combines size indicators, element deletion,

local remeshing, field transfer operators and an adaptive loading sequences technique is used. Various

methods [3][6] mostly in 2D and based on finite element have been proposed to predict the ductile frac-

ture occurrence inside metallic parts formed by large plastic deformation based on damage-induced loss

of stiffness together with mesh adaptation. As very few techniques have been proposed in a 3D context,

we focus on this topic.

2 Mesh adaptation methodology

The FEM based numerical simulation of forming processes involving large inelastic (plastic or vi-

scoplastic) deformations requires adequate spatial discretization of the deformed parts. Indeed, during

Lagrangian-based numerical simulations of forming processes, frequent remeshing is needed during the

computation in order to avoid large mesh distortion and also to describe the large gradient of the highly

localized physical filed, such as damage. The size of the mesh must be driven by appropriate size indi-

cators based both on physical fields (stress, plastic strain, damage . . . .) and also on the curvature of the

external boundary of the domain allowing an accurate enough descritization during the initial step. In our

work, the crack is represented by deleting totally damaged elements. Nodal variables such as velocity are

transferred by a classical shape function interpolation. All the cumulative integration variables related

to the model, such as stresses, plastic strain and damage are transferred from the deformed mesh (old

mesh) to the adapted mesh (new mesh) by an enhanced hybrid transfer operator. ABAQUS R© is used as an
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explicit solver and damage is described by a model from Hooputra et al. [7]. However, the methodology

can be used with any other damage related criterion.

2.1 Size indicator

Our methodology is based on the empirical assumption that ductile material behavior can be des-

cribed by several continuous phases, such as : pure elastic zone without plasticity, homogeneous plastic

zone with low damage values, localized plastic zone with moderate damage values and highly localized

plastic zone with severe damage values. The mesh size is then mainly driven by the evolution of plastic

flow and damage variable. In each of the behavior phase, cumulative plastic strain or damage value can

be associated with the mesh size by empirical size indicators detailed in table 1.

TABLE 1 – Empirical size indicators

Behavior phases Evolution of plasticity p and Damage D Size indicators

Pure elastic p = 0 hp = hmax

Homogeneous plastic p ≤ p∗ hp = (h
p
max−hmax)

p∗
p+hmax

Localized plastic p > p∗ hp = (h
p
min −hP

max)(1− e−κ1(p−p∗))+hP
max

Moderate damage Dmin < D ≤ Dmax hD = (hD
min −hp)(1− e−κ2(D−Dmin))+hD

max

Severe damage D > Dmax hD = hD
min

In table 1, cumulative plastic strain is denoted as p and damage value is denoted as D. A threshold

value satisfying a given criterion which maximizes the value of the second invariant of the Cauchy stress

is denoted as p∗. Two parameters κ1 and κ2 are tuned to minimize the number of elements while capturing

the gradient of the physical fields as accuracy. The empirical size indicators are illustrated in figure 1.

FIGURE 1 – Empirical size indicators

2.2 Local remeshing

A bi-section technique [2] is applied to refine the 3D tetrahedral mesh according to the empirical size

indicator as well as to avoid entanglement during large deformation. A background octree is built to keep

the size information. An edge of the mesh is split if its length is bigger than the information size obtained

from the background octree. An element is then refined if at least one of its edge is determined to be split.

The subdivision process is based on the determination of pre-calculated tetrahedron subdivision patterns,

as illustrated in Figure 2. We experienced that element shape optimization is needed in a last step. The

whole remeshing process including quality optimization is very quick and its computational cost can

be neglected compared to the explicit solver. The overall splitting process can be iterated to reach the
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prescribed mesh size if needed. Since the process is based on subdivision, much attention should be paid

to the initial mesh. The size ratio between adjacent elements should not exceed 2 what limits the creation

of ill-shaped elements.

FIGURE 2 – Tetrahedron subdivision patterns

2.3 Field Transfer

After element deletion and mesh adaptation, the topology of the mesh is changed. Therefore, the

related variables at both nodal points and integration points should be transferred from the old mesh to

the new mesh. The variables at nodal points are transferred by a classical finite element shape function

interpolation [9]. The variables at integration points are transferred by a hybrid transfer operator. This

hybrid transfer operator is consisted of two steps. In a first step, variables at the integration points of the

old mesh are transferred to nodes of the new mesh by Diffuse Interpolation with enhanced point selection.

In a second step, these variables are transferred again to integration points of the new mesh by FE shape

functions interpolation. This enhanced hybrid transfer has the advantages to deal with problems in which

the cumulative physical fields have high gradients and therefore the adapted mesh has a corresponding

high gradation. We then focus on the first step.
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FIGURE 3 – Information points seletion

Diffuse Interpolation is based on the classical Diffuse Approximation method but in its interpolation

form. The selection of the points denoted as information points which are used to build the approxima-

tion has been enhanced. Classical information point selection is based only on the distance [3] between

neighboring points and the evaluation point. In a 3D tetrahedral mesh context, the number of the neigh-

boring points can be huge up to 400. However, we experienced that no more than 20 points are necessary

to build a linear Diffuse Interpolation, otherwise there is too much numerical diffusion [4]. The distance

based selection cannot limit the number of the information points. Furthermore, as shown in Figure 3(a),

even if the number of points may build the interpolation, the selected set of information points cannot

capture the gradient of the fields in some directions. This occurs in areas where mesh gradation is stiff.

Therefore, selection of information points must consider both distance and direction in order to capture

the gradient of the physical field with accuracy while minimizing numerical diffusion as illustrated in

Figure 3(b). In our enhanced information point selection process, for each evaluation point (nodal point
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FIGURE 4 – Variables related to the

construction of direction weight

FIGURE 5 – The shape of effective

direction weight function

of the new mesh), an element of the old mesh containing the point is determined. All the integration

points of the elements which are connected to this containing element are searched as neighboring points

using mesh connectivity in order to satisfy a visibility criterion [1]. These neighboring points are then

sorted by their relative positions to the evaluation point. A group of information points are then selected

from these neighboring points which are distributed the most isotropically around the evaluation points

in terms of radial direction. Diffuse Approximation method is then applied in its interpolation form [2]

to get the value at evaluation point through the values at the information points. The method to guarantee

isotropic distribution of information points as well as limit their number is detailed thereafter.





wdir
i,l (Mi,

−→
dvl) =

cos(βi,l)− cos(γ)

1− cos(γ)
, if cos(βi,l)≥ cos(γ) (1a)

0, otherwise (1b)

w̃dir
i,l∗i

= max(wdir
i,l ) |

q
l=1 (2)

wdir
i,l = w̃dir

i,l∗i
·w∞

i (3)

In a first step, a group of referenced direction vectors
−→
dvl which provides an isotropic distribution

around the evaluation point M0 is considered. For each neighboring point, a group of direction weights

wdir
i,l associated to these direction vectors is constructed, as expressed in Equation (1). The variables used

in Equation (1) are defined in Figure 4. In a second step, the effective direction weight w̃dir
i,l∗i

of each

neighboring point is calculated by Equation (2) in which l∗i is denoted as the number of the direction

vector in terms of which direction weight is the maximum one for this neighboring point. The shape of

effective direction weight functions with 14 referenced direction vectors is illustrated in Figure 5. In a

final step, the effective direction weight and a distance weight w∞
i [3] are combined to form a selection

weight. The selected information points are the neighboring points which maximized the selection weight

in vicinity of each referenced direction vector. Therefore, the number of final selected information points

are linked to the number of referenced direction vectors.

2.4 Results and conclusion

The methodology is validated through the simulation of a tensile test on an aluminum alloy plate

specimen (EN AW-7108 T6). The thickness of the specimen is 0.5mm and the other dimensions are given

in Figure 6. A model from Hooputra et al. [7] is used to describe the damage and ABAQUS R© explicit

is used as a solver. The left extreme of the specimen is fixed and a constant velocity 2.5mm/s is applied

at the right extreme. A 10-node tetrahedral (C3D10M in ABAQUS R©) is used to perform the simulation.

At the very beginning, a coarse mesh is used and the size of the elements are adapted with respect to

the curvature of geometry boundary. The evolution of damage is displayed in Figure 7 with the initiation

and propagation of the crack. In order to allow the mesh gradation to capture the gradient of the physical
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FIGURE 6 – Dimension of the specimen in mm

field, the length of the loading sequence should be reduced when plasticity accumulates quickly as shown

in Table 2 from loading sequence 1 to 8. If the damage accumulates slowly, the loading sequence can be

increased as shown in Table 2 from loading sequence 21 to 28. As a result, at each loading sequence, the

increase of the number of the elements is controlled. we can also see that the computational time of the

adaptive process including remeshing and field transfer can be neglected compared to the time spent in

the solver.

(a) The initial condition

(b) Loading sequence 1

(c) Loading sequence 8
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(d) Loading sequence 15

(e) Loading sequence 22

(f) Loading sequence 29

FIGURE 7 – Initiation and propagation of the crack

TABLE 2 – Information of h-adaptive process

Loading sequence
Number of

vertex nodes

Number of

elements

CPU time of

solver (min)

CPU time of

remeshing (min)

Length of loading

sequence (s)

1 1392 3774 92 <1 1,0000

2 1996 6138 58 <1 0,5000

3 3618 13642 17 <1 0,0500

4 9449 42933 41 <1 0,0300

5 17697 85802 32 <1 0,0200

6 20257 98410 2 <1 0,0010

7 21395 103782 3 <1 0,0010

8 22418 108710 2 <1 0,0005

9 23707 115079 2 <1 0,0005

10 25067 121846 2 <1 0,0005

11 26009 126435 2 <1 0,0005

12 26967 131135 2 <1 0,0005

13 27623 134230 2 <1 0,0005

14 28389 137857 3 <1 0,0005

15 29158 141285 4 <1 0,0005

16 31522 153197 4 <1 0,0005

17 38033 187177 4 <1 0,0005

continued on next page
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continued from previous page

Loading sequence
Number of

vertex nodes

Number of

elements

CPU time of

solver (min)

CPU time of

remeshing (min)

Length of loading

sequence (s)

18 40625 200003 4 <1 0,0005

19 41989 206539 4 <1 0,0005

20 43134 212172 4 1 0,0005

21 43898 215793 4 1 0,0005

22 44381 218044 6 1 0,0010

23 44834 220223 52 1 0,0100

24 45087 221432 107 1 0,0200

25 45746 224462 263 2 0,0500

26 46531 228255 107 3 0,0200

27 47807 234557 120 1 0,0200

28 49159 241041 136 1 0,0200

29 49839 243977 21 3 0,0050
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