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Abstract — Constitutive models for glassy polymers have been based on the concept of a flow resistance
internal variable for over 20 years. Through investigation and implementation of these state-of-the-art
models, the current authors identified a new possibility for characterizing this class of polymers, which
can simplify the analysis and frame them in a well posed family of constitutive models, especially suited
for using the variational constitutive update approach. A visco-hyperelastic model is proposed which
results in one single equation to be solved at each time step in the constitutive incremental update.
Comparison against experimental data is performed and a numerical example inside a FEM framework
is given.
Mots clés — Glassy Polymers, Variational Updates , Finite Viscoelasticity.

1 Introduction

Products made of polymers are undoubtedly in our daily routine. Their behavior can exhibit strong
dependence on temperature [14] , strain rate [3, 8] and pressure [15], and their properties can vary
drastically if processing methods and conditions change. Among them, amorphous glassy polymers are
highlighted due to their widespread applicability and manufacturing flexibility. This way, the constitutive
modeling of these materials depends on the improvement of experimental and numerical methods to
predict their response regarding arbitrary loading histories.

Historically, Haward and Thackray (1968) [4] attempted to model these class of polymers for a long
range of strains using an unidimensional rheological model. The recent work of Holopainen (2013) [5]
presents a literature survey about this topic and cites the work of Boyce, Parks and Argon (1988) [3] and
the work of Anand and Ames (2006) [1] as the state of the art models currently available. Holopainen
proposes a new formulation, called Extended Boyce, Parks and Argon model (EBPA) and presents some
results. The models provided by Boyce, Parks and Argon (1988) [3] , Anand and Gurtin (2003)[2],
Anand and Ames (2006) [1] and Holopainen (2013) [5] are all based on the concept of a flow resistance
internal variable, which must be solved conjointly with the problem.

Through investigation and implementation of these state-of-the-art models, the current authors iden-
tified a new possibility for characterizing this class of polymers, which can simplify the analysis and
frame them in a well posed family of constitutive models, especially suited for using the variational
constitutive update approach introduced by Ortiz and Stainier (1999) [6]. In the overall treatment of
constitutive models, the variational approach [6] is a mechanical mathematical cornerstone, thermody-
namically consistent, which allows the inclusion of a variety of dissipative mechanisms, but retaining the
main properties of a conservative model such as hyperelasticity.

2 Constitutive Modeling

2.1 Kinematics

We propose a visco-hyperelastic model based on the rheological model depicted in figure (1). The
kinematic relations and hypothesis are briefly introduced next. It is assumed that the deformation gra-
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Figure 1: Rheological Model

dient F can be decomposed in an isochoric factor F iso (detF iso = 1) and in a volumetric factor F vol

(detF vol = J = detF ) as F = F isoF vol .
Aiming at large strains, the multiplicative decomposition introduced by Lee (1969) is utilized to

split the isochoric deformation gradient F iso in two factors; an elastic deformation gradient F e and an
inelastic deformation gradient F p

F iso = F eF p (1)

The same strategy is widely used in the literature and a non-exhaustive list would include [3, 2].
The inelastic flow is assumed to be isochoric, in the sense that detF p = 1. As a direct consequence,

the inelastic velocity gradient becomes a traceless tensor trLp = 0. We further assume that the flow
is also irrotational, which requires the inelastic spin to be null W p = 0. An interesting motivation
with mathematical background is presented by [2] to justify an irrotational flow assumption. Based on
this condition, the inelastic velocity gradient Lp must be symmetric, and thus must be the same as the
inelastic stretching tensorDp resulting in the condition Ḟ p =DpF p.

2.2 Thermodynamic Framework

The major difference among the available models used to describe glassy polymers [3, 2, 1, 5] and the
current work relies on thermodynamical aspects. These previous works assume the concept of a flow
resistance to be an internal variable that must be solved conjointly with the constitutive problem. Our
approach does not rely on such an assumption, and thus the thermodynamic framework has to be adapted.

As stated previously, our theory is purely mechanical and based on thermodynamics. It is assumed
that on a sufficiently small neighborhood around a material point, the thermodynamic state can be
uniquely described by the total deformation gradient F , the inelastic deformation gradient F p and by
a scalar quantity R named accumulated viscous strain, i.e. E = {F ,F p,R}. This accumulated viscous
strain is a measure of how much the material has undergone viscous stretching and is defined by

R =
∫ t

0

√
2‖Dp‖dt (2)

In order to use the variational framework proposed by [6], it is necessary to introduce two energetic
potentials: the Helmholtz free energy potential W and the dissipation potential φ. We assume that the
Helmholtz potential can be split additively into 3 other energies

W (E) =U (J)+L
(
F iso)+ψ(F ,F p) (3)

The first one is an energy based exclusively on the volumetric deformation provided by the Jacobian
J. The volumetric deformation is also considered a purely elastic process, as in references [11, 12],
and is given by U (J) = κ

2 (lnJ)2. Note that this split of a volumetric energy allows the adoption of
different solution strategies, such as the variational three-field potential proposition [19] to deal with
incompressibility issues.

The second energy potential comes from the eight-chain hyperelastic model introduced by [17]. This
model is based on statistical mechanics and is also adopted in [2] . Note that the way it is used by [2],
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i.e. as dependent on the inelastic deformation gradient, generates a back stress, while our approach does
not.

Finally we consider a quadratic Hencky energy potential, given by ψ(εe)=G‖devεe‖2 , as dependent
on the logarithmic strain from the elastic right-Cauchy tensor εe = 1

2 lnCe = 1
2 ln
(
F eTF e

)
.

As mentioned previously, in order to use the methodology proposed by [6] it remains necessary
to define a dissipative potential. A Perzyna-like potential is adopted, as also utilized in the works of
[12, 6, 9]

φ
(
R, Ṙ

)
=

{
s(R)
m+1 Ṙm+1 Ṙ≥ 0
∞ Ṙ < 0

(4)

However, in [12] the dissipative potential considers a constant flow resistance s, and in [9] an elasto-
visco-plastic model with linear hardening is proposed. Reference [2] does not demonstrate any dissi-
pative potential, but a careful analysis of the flow equations reveals that analogous equations are in fact
obtained by the potential (4).

When compared against other models [3, 2, 1, 5], the main difference that arises in the current
formulation is the flow resistance as a state dependent variable s(R), i.e., it is not solved for but rather
just evaluated when needed. It is then sufficient to define an explicit function s(R) that associates the
material flow resistance with the accumulated viscous strain. Some examples may be useful to better
understand the versatility of this function. One can consider the resistance to be constant s(R) = s0
rendering a traditional Perzyna flow-rule [9, 6], or by assuming a linear dependence on the viscous rate
(m = 1) obtain a Newtonian flow. However, these assumptions are not satisfactory to deal with glassy
polymers, as they generally show a loss of resistance in the flow mechanisms. A better choice would be
a function which accounts for the possibility of a flow resistance transition, ranging from an initial state
s0 to a saturated value s∞. This can be accomplished by the function

s(R) = s∞ +(s0− s∞)e−ζR (5)

which, by the way, captures the essence of the model introduced by Boyce , Parks , Argon [3]. On the
other hand, an even more elaborated choice could be the function

s(R) = s∞ + e−ζR [(s0− s∞)cosh(βR)+ γsinh(βR)] (6)

which can deal with a peak resistance followed by a continuous loss of resistance until a saturated value
is achieved. This type of relation allows a better description of the phenomena and is in consonance with
the model introduced by Anand and Gurtin [2].

2.3 Constitutive Variational Problem

As the accumulated viscous strain R and its rate Ṙ are frequently addressed, it becomes convenient to
perform a decomposition of the inelastic stretching tensor Dp. It is assumed that this tensor can be
decomposedDp = ṘN in a positive scalar quantity Ṙ ∈ R+and a tensorN with constrained magnitude

N ∈N =

{
A ∈ Sym | trA= 0 and ‖Dp‖= 1√

2

}
. (7)

This type of decomposition is often referred as an amplitude-direction decomposition, as the stretching
magnitude is described by Ṙ while all the tensorial properties are held byN . The constraints (7) overN
arise from the constraints shared by Lp , which are the symmetry and traceless conditions. By doing so,
the inelastic deformation gradient rate becomes

Ḟ p = ṘNF p. (8)

This alternative approach, with the amplitude-direction assumption, is often stated as the parametrized
constitutive problem [6]. To demonstrate the variational nature of the constitutive problem, still consid-
ering a continuous time description, all required equations are shown to be obtained from the stationarity
conditions of a potential. It can be formally done by the statement:
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Variational Principle Given a state E = {F ,F p,R}, among all admissible internal processes, the one
described by the parametrization that minimizes the functional Ψ̇ is the effective one

inf
Ṙ∈R+,N∈N

Ψ̇ =
d
dt

W (F ,F p)+φ
(
R, Ṙ

)
(9)

Through the optimality conditions, one can arrive at the desired equations

N =
1√
2

devs (M e)

devs (M e)
(10)

− 1√
2
‖devs (M e)‖+ s(R) Ṙm = 0 (11)

where M e is the Mandel stress, and devs(·) stands for the symmetric-deviatoric operator. This way the
evolution of the internal variables Ḟ p (eq. 8) and Ṙ is completely defined, analogously to the model
presented by [2].

Following the variational framework [6], the first Piola-Kirchhoff stress tensor can be obtained di-
rectly from the effective potential Ψe f f

Ψ̇
e f f (Ḟ )= inf

Ṙ∈R+,N∈N
Ψ̇ =

d
dt

ψ(F ,F p)+φ
(
R, Ṙ

)
(12)

through the operation

P =
∂

∂Ḟ
Ψ

e f f (Ḟ ) (13)

Straightforwardly, the Cauchy stress can be obtained from P through the usual transformation

σ = J−1PF T (14)

which renders 3 additive terms, each one derived from the corresponding energetic potential,

σ = σvol +σec +σm. (15)

2.4 Incremental Constitutive Update

The incremental version of the variational problem (9) is approached in details in reference [6]. It can be
stated as follows:

IncrementalVariationalUpdate Given a state En at time tn and the total deformation gradient Fn+1
at time tn+1, among all admissible updated states En+1 at time tn+1, the one described by the
parametrization that minimizes the incremental functional Ψinc corresponds to the effective up-
dated state

inf
R̊∈R+,N∈N

Ψinc = ψ
(
Fn+1,F

p
n+1

)
−ψ(Fn,F

p
n )+∆tφ

(
Rn+α, R̊

)
(16)

where α ∈ [0,1] is an algorithmic parameter analogous to an integration parameter. Some terms need to
be detailed. As we are dealing with an incremental version of the constitutive problem, the rate Ṙ and the
relation (8) must be somehow rewritten by their discrete counterparts. The discrete version of Ṙ becomes
R̊ and keeps the same physical meaning as before, relating the states Rn+1 and Rn by

Rn+1 = Rn +∆tR̊ (17)

The inelastic deformation gradient update F p
n+1 is performed by means of the exponential mapping [18]

F p
n+1 = EXP [∆tDp]F p

n (18)

due to its property of preserving the value of the determinant detF p
n+1 = detF p

n = 1 if the traceless
condition trDp = 0 is fulfilled, without imposing any additional constraint to the problem. The optimality
condition of (16) provides an analytical flow directionN given by
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N =
1√
2

dev
(
εpre

n+1

)∥∥dev
(
εpre

n+1

)∥∥ (19)

which depends solely on an elastic predictor state [10]. That is, an elastic predictor state is a fictitious
state defined at time tn+1 in which kinematic variables associated to inelastic quantities are held fixed at
the previous time tn. Therefore the elastic deformation gradient associated to the predictor state is given
by F pre

n+1 = F iso
n+1F

p−1
n , conjointly with the right Cauchy-Green tensor C pre

n+1 =
[
F pre

n+1

]T
F pre

n+1, and the
elastic predictor logarithmic strain εpre = 1

2 lnC pre. The single equation to be solved that arises from the
optimality condition is thus

R̊−
√

2
∆t

∥∥dev
(
εpre

n+1

)∥∥+ s(Rn+α)

G∆t
R̊m +

α

G
ds
dR

(Rn+α)
R̊m+1

m+1
= 0 (20)

After solving it, the variables R̊ and N (19) are used to update states (En→ En+1) (eqs. 18 and 17).
Analogously to the continuum time formulation (9), the first Piola-Kirchhoff is obtained directly from
the effective incremental potential [6]

Ψ
e f f
inc (Fn+1) = inf

R̊∈R+,N∈N
ψ
(
Fn+1,F

p
n+1

)
−ψ(Fn,F

p
n )+∆tφ

(
Rn+α, R̊

)
by its differentiation

Pn+1 =
∂Ψ

e f f
inc

∂Fn+1
(21)

which ends up generating the same relations for the updated Cauchy stress σn+1 (15), but all the quanti-
ties being evaluated at the updated state En+1.

3 Numerical Results

3.1 Model Assessment

The main purpose of this section is to address some numerical experimentations with the proposed model
in order to verify its capabilities. Therefore, we do not intend to provide, nor claim to have found, any
useful material parameter to be used in real applications, due to the small number of experiments used to
calibrate the model.

In order to completely define the model, 10 material parameters are required; the set {m,s0,s∞,ζ,β,γ}
defines the dissipative potential (4) and the flow resistance (6), {G} defines the quadratic Hencky poten-
tial , {λlock,µ} defines the eight-chain hyperelastic model, {κ} is related to volumetric effects. Some ex-
perimental results for a sample of poly(methyl methacrylate) (PMMA) are available in the work of [8].
These authors performed some compression tests at different strain rates

{
10−1,10−2,10−3,3(10−4)

}
[1/s], and along with the fitting results, can be visualized in figure (2). In fig. (2a) the stress-strain curve
is presented, where the markers refer to experimental data (obtained from [8]) and the continuum lines
are the predicted response of our model. Note the agreement between both the experimental and the
numerical results. The figure (2b) depicts the associated flow resistance (eq. 6) and its evolution. A loss
of 40% of resistance in relation to the initial resistance can be verified.

Another set of experimental results was extracted from the work of [7]. In this case, loading-
unloading compression tests were performed with polycarbonate (PC) at different unloading strains. The
figure (3a) shows the stress-strain curves that were obtained, where again the markers are the experimen-
tal data and the continuum lines refer to the model prediction. The initial aspects of the stress-strain, cap-
turing the strain softening phenomena and the post-yielding hardening, could be well described, however
the unloading aspects of the curve were only satisfactory. The flow resistance associated to this material
can be checked in figure (3b), where a loss of 40% of resistance could be found as well, if compared
against the initial state.
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Figure 2: PMMA. Experimental results from [8] (markers) and fitted model (solid lines).
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Figure 3: PC Experimental results from [7] (markers) and fitted model (solid lines).

3.2 Convergence

Being a numerical framework and based on time discrete approximations, it becomes important to verify
how time intervals influence the solution specially concerning stress convergence and the overall shape
of stress-strain curves. In order to check convergence, different simulations were performed, each one
having its own time interval (∆t) and integration parameter (α) (see 16). A reference solution was
obtained using a large number of time divisions, namely 3 ·105 divisions , thus resulting in a small time
interval. Figure (4a) gathers all these results. As the time interval reduces, so does the maximum relative

error in stress given by max
t∈[t0,t f ]

‖σ−σre f‖
‖σre f‖ . For small time intervals a linear convergence was observed,

which matches the observations of [9] for small strain J2 plasticity and is consistent with a backward-
Euler scheme . One can see that for these experiments, an integration parameter of α= 0.5 performed the
best, although as pointed out by [9] there may actually be another optimal α parameter. The stress-strain
curve is presented in figure (4b) for a different number of time divisions ndiv ∈

{
2i ·10, i = 1,12

}
and

for the integration parameter α = 0.5. It can be noted that the overall curve shape converges relatively
fast, apparently from below, and did not show any evidence of an oscillating convergence.

3.3 Tensile Test

The proposed viscoelastic model was implemented inside a FEM framework to verify its performance.
A simple tensile test of a 3D specimen was performed using the fitted PMMA material (fig. 2a). Due to
symmetries, only one-eighth of the structure was discretized, rendering a model with a coarse mesh of
500 8-noded brick elements and 2754 degrees of freedom. A prescribed displacement was set at the top
and symmetry boundary conditions were applied at the corresponding faces. The converge was smooth
with an average of 4 global newton iterations per time step. The deformed (unscaled) mesh is shown in
figure (5a) at the end of the simulation.

The axial Cauchy stress evolution was analyzed at the 6 elements depicted in figure (5a) and the
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(a) Initial mesh and unscaled deformed mesh at t = 10s
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Figure 5: Example of a FEM simulation

results presented in figure (5b). It is interesting to note how different sections of the geometry are
solicited during the deformation process, as each one undergoes a softening phenomenon followed by a
recovery of resistance.

4 Conclusions

An alternative thermodynamic formulation has been developed for predicting the behavior of glassy
polymers. It is based on the concept of a flow resistance state dependent variable, instead of internal
variables as is commonly adopted in the literature. An explicit flow resistance function is proposed,
which increases the model‘s versatility and makes it easier to understand the softening nature of these
class of polymers, allowing the recovery of other models and behaviors, such as Newtonian viscous flow,
Perzyna flow, BPA model. Numerical assessments of the model showed an excellent agreement with
simple compression experiments, and a monotonic stress convergence could be observed for smaller
time steps. A FEM framework was used to verify a tensile test in a 3D specimen, and the algorithm‘s
performance was based uniquely on the solution of a single scalar equation at each integration point,
which renders a computationally robust algorithm.
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