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Résumé — Nowadays, gradient-based methods have achieved big success in continuous optimization
problems, but most of them focus on the local searching process, thus the global solutions of the problems
may be lost. The main difficulty of global searching is how to find a solution which is better than the
current local solution obtained by gradient-based methods. In this paper, we propose a guide function
approach which can help find better solutions when a local solution has already been found. A classical
numerical test is executed using the proposed approach to show its validity, and in further development,
this approach will be extended for categorical optimization.
Mots clés — Global Optimization, Continuous Problem, Guide Function.

1 Introduction

Continuous optimization problems are always be tackled with local searching methods, especially
gradient-based algorithms (e.g. steepest descent, conjugate gradient methods), when both objective and
constraint functions are continuous and differentiable. In this case, local solutions can always be found.
To purse higher goals, global optimization remains a tough issue. General evolutionary methods, inclu-
ding genetic algorithms [?], evolutionary strategy [?], are always used to obtain the global solution. But
they may confront the optimization efficiency issue. Different from evolutionary algorithms, the filled
function method proposed in [?, ?, ?] is applied to construct a path which can help optimize the objective
function when a local solution has been found by using gradient-based searching. In their papers, the
authors recommend that a delicate parameter setting for the filled function is the critical for successfully
obtaining the global solution. Another method for global optimization is called the tunnelling methods
[?, ?, ?]. The tunnelling methods focus on digging a horizontal tunnel out of the function valley when
the gradient-based methods have found a local solution, thus may help find a better solution step by step.
In this paper, the main context are as follows : in section 2, we formulate the problem definition ; in
section 3, we propose our approach for global optimization ; then In section 4, a numerical example is
tested ; and in the last, we draw some conclusions.

2 Problem formulation

This paper deals with finding a global minimizer of a at least twice continuously differentiable func-
tion

f (x), x= (x1,x2, · · · ,xn). (1)

We also assume
f (x)→+∞, ‖ x ‖→+∞. (2)

So there exists a subspace of the whole design space which contains all the local minimizers. We name
this closed boundary subspace as Ω in which every design variable xi satisfies

xi ∈ [xmin
i ,xmax

i ], i = 1,2, · · · ,n. (3)

So f (x) has no minimizer along its design boundaries. In this paper, we assume this subspace Ω is known
in advance, and we handle the global optimization process in Ω.
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3 Guide function approach

In this section, the guide function approach for finding the global solution is introduced. The guide
function is a combination of base function, Heaviside function, compress function and background func-
tion. They will be explained step by step.

3.1 The guide function

Before we put forward the guide function approach, we assume one has found a local minimizer by
local searching method, and we mark this local minimizer as x∗1. Then the base function is written as :

BF(x) = ( f (x∗1)− f (x)− ε) (4)

where ε is a small positive value and it makes BF(x∗1) < 0. For any given x, if f (x) is larger than
f (x∗1)− ε, then BF(x) is negative, and vice versa.
Then the continuous Heaviside function is introduced to penalize the base function

Hs(BF(x)) = k1arctan(BF(x))/π. (5)

We can see that if BF(x) < 0, Hs(BF(x)) will be about −k1/2 ; while if BF(x) > 0, Hs(BF(x)) will
be about k1/2. k1 is an adjusting parameter, and is given as positive.
In the third step, the compress function is used to compress the smaller peak regions of Hs(BF(x))

CF(Hs(BF(x))) = k2NHs(BF(x))(Hs(BF(x))+1). (6)

where N denotes a big positive number, in our test, N is set as 50. k2 is used to adjust the magnitude of
the compress function. Finally, the guide function is written as

GF(x,x∗1) = P(x,x∗1)−CF(Hs(BF(x))) (7)

where P(x) is the background function which is written as

P(x,x∗1) = e
− ‖x−x

∗
1‖

2

2ρ2 (8)

where ρ is a positive value. The guide function holds the advantage that only the local minimizers which
are smaller than f (x∗1) are remained in this function, the other local minimizers are vanished due to the
compress function.

3.2 Optimization strategy

The global optimization process can be listed as follows :
Step 1 : Set l and m as 1, n is the number of design variables.
Step 2 : Use gradient-based methods to find the first local minimizer x∗m ;
Step 3 : If l = n, go to Step 6 ; else we make x0 = x∗m + tel . t is the step length and el indicates the unit
vector in which e(l) = 1.
Step 4 : Optimize GF(x,x∗m) from the initial point x0 until find a solution xt which satisfies f (xt) <
f (x∗m) or ‖ f (xt)− f (xt−1 ‖< τ, τ is a small positive value.
Step 5 : If f (xt) < f (x∗m), then m = m+ 1, use xt as the initial design and go to step 2 ; if ‖ f (xt)−
f (x∗m ‖< τ, l = l +1, go to step 3.
Step 6 : Global optimization converges and output optimization results.
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FIGURE 1 – The six-hump camel back function

4 Numerical test

In this section the classical six-hump camel function is tested for the guide function approach. The
six-hump camel function is written as :

f (x1,x2) = 4x2
1−2.1x4

1 +1/3x6
1− x1x2−4x2

2 +4x4
2 (9)

As shown in Fig. ??, the camel function contains six local minimizers. Among them the global minimizer
is x∗ = (0.0898,−0.7126) or x∗ = (−0.0898,0.7126) with the global minimum f (x∗) =−1.0316.
We start the searching from an initial design point x0 = (−2,−1). By using BFGS methods, we can find
the first local minimizer x∗1 = (−1.7037,−0.7957) with its objective value f (x∗1) = −0.21546. In the
next step we construct the Guide function. Firstly, the base function is shown as in Fig. ??.

FIGURE 2 – The base function

Then the base function is penalized by Heaviside function, as displayed in Fig. ??. In Fig. ??, we can see
that the original minimizers become maximizers.
In order filter the unobtrusive minimizers, we introduce the compress function. Its shape is shown in Fig.
??.
We use the difference of the background function and the compress function to obtain the guide function
(Fig. ??). We continue to optimize on the surface of the guide function. By using the BFGS method, it
gives a descending line as shown in Fig. ??, and then we obtains the global minimizer finally, as shown
in Fig. ??. After we have found a new better minimizer, we continue using the global approach, trying
to find a better one. We reconstruct the guide function, and it is illustrated in Fig. ??. After the trying
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FIGURE 3 – The Heaviside function

FIGURE 4 – The compress function

FIGURE 5 – The guide function

searches, no better solution can be obtained, proving that we probably have found the global minimizer.
The objective history versus iteration number is shown in Fig. ??.
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FIGURE 6 – The guide search line in the guide function

FIGURE 7 – The optimization process

FIGURE 8 – The 2nd guide function

5 Conclusion

In this paper, a guide function approach, consisting of the base function, the Heaviside function, the
compress function and the background function, is proposed to solve continuous global optimization pro-
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FIGURE 9 – The objective history

blems. The six-hump camel function proves that the guide function can automatically filter the designs,
eliminating those local minimizers which are worse than previous minimizer.
In further development, this proposed approach will be compared with the filled function method and
other global optimization methods. Then it will be tested for categorical optimization problems.
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