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Résumé — This paper presents a fine grain parallel version of the 3D Mesh generation procedure using
the OpenMP (Open Multi-Processing) API on standard NUMA multicore processors and on the new
Intel Knight’s Landing architecture. The most significant piece of algorithm of the meshing procedure
is the Delaunay kernel. A set S = {p1, . . . , pn} of n points is taken as input. S is initially sorted along a
space-filling curve so that two points that are close in the insertion order are also close geometrically.
A parallel radix sort is implemented on massively multithreaded architectures that allow to sort about
half a billion points in about a tenth of a second. The sorted set of point is then divided into M subsets
Si, 1 ≤ i ≤M of equal size n/M. The multithreaded version of the Delaunay kernel inserts M points at
a time in the triangulation. OpenMP barriers provide the required synchronization that is needed after
each multiple insertion in order to avoid data races. This simple approach exhibits two standard problems
of parallel computing : load imbalance and parallel overheads. Those two issues are addressed using a
two-level version of the multithreaded Delaunay kernel. Tests show that triangulations of about a billion
tetrahedra can be generated on a 32 core machine (Intel Xeon E5-4610 v2 @ 2.30GHz with with 128
GB of memory) in less that 3 minutes of wall clock time, with a speedup of 18 compared to the single-
threaded implementation. Then, a parallel point insertion algorithm is presented that allows to generate
very large meshes one order of magnitude faster than state-of-the art implementations.
Mots clés — Mesh Generation, Multi-threading, KNL.

1 Introduction

In the last decades, the size of the finite element meshes that are used in industry for scientific
computing has grown considerably due to the availability of massively parallel computers. It is nowadays
not uncommon to generate meshes that have over 100 million tetrahedra. From a user’s perspective,
however, generating a mesh of a complex domain usually involves the generation of several intermediary
meshes that are progressively enhanced in order to fulfill some adequate design requirements. Today’s
best 3D meshing algorithms are able to generate about five million tetrahedra per minute on one single
core [1]. Each iteration in the meshing process thus takes long minutes and users eventually spend a
significant portion of their time waiting for the mesh generator to provide outputs.

Computation platforms are increasingly based on multicore architectures with a large common shared
memory but relatively low performance individual computing cores. The performance of today’s mesh
generation procedures, based on serial kernels, is thus largely stalling, and may actually degrade in the
future.

Parallel mesh generation procedures have been developed for several years. Up to ten years ago, the
great majority of parallel meshing algorithms worked at a coarse grain level (see [2] for an exhaustive
survey). In such coarse grain algorithms, the 3D domain is first partitioned into subdomains ; the internal
2D boundaries between the subdomains are then meshed in order to ensure the compatibility of the 3D
meshes in adjacent subdomains ; and serial meshing procedures are finally applied at the subdomain
level [3, 4, 5]. The focus of these parallel algorithms is mostly about mesh size and not so much about
fast meshing : indeed, generating very large meshes cannot be done on one single CPU and it is thus
very important to distribute the meshing generation process in order to have access to sufficient memory.
Multicore platforms offer the advantage of low latency communications through shared memory, leading
to the possibility of fine-grain parallelism in the meshing kernels. Recently, CGAL [6] developers have
proposed a fine-grained multithreaded version of the Delaunay triangulation in 3D based on locks [6].
Different locking strategies have been analyzed, with typical speedups of 5 with 8 computing cores, but
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at the cost of a fairly complex algorithmic implementation.
This paper is essentially a preliminary work in multithreading the meshing process of Gmsh [7].

The overall aim is similar to CGAL’s, i.e., to increase the speed of the central piece of the mesh gene-
rator through a fine-grained parallelization of the Delaunay kernel. The main difference is that we focus
here on the simplicity of the implementation, using the OpenMP (Open Multi-Processing) Application
Programming Interface (API).

2 The Delaunay Kernel

In what follows, a triangle is the generic term for a triangle in 2D or a tetrahedron in 3D. A trian-
gulation T (S) of S is a set of non overlapping triangles that exactly covers the convex hull Ω(S) with
all points of S being among the vertices of the triangulation. The Delaunay triangulation DT(S) is such
that the empty circumcircle of any triangle in DT(S) is empty, i.e., it contains no point of S. Delaunay
triangulations are popular in the meshing community because fast algorithms exist that allow to generate
DT(S) in O(n logn) complexity.

The fastest 3D algorithms that allow to build DT(S) are based on the Delaunay kernel [8]. Let DTk
be the Delaunay triangulation of a point set Sk = {p1, . . . , pk} ⊂Rd . The Delaunay kernel is a procedure
that allow the incremental insertion of a given point pk+1 ∈ Ω(Sk) into DTk and to build the Delaunay
triangulation DTk+1 of Sk+1 = {p1, . . . , pk, pk+1}. The Delaunay kernel can be written in the following
abstract manner :

DTk+1 = DTk−C (DTk, pk+1)+B(DTk, pk+1), (1)

where the Delaunay cavity C (DTk, pk+1) is the set of all triangles whose circumcircles contain the new
point pk+1 (see Figure 1 ; the triangles of the cavity cannot belong to DTk+1) and the Delaunay ball
B(DTk, pk+1) is a set of triangles that fill the polyhedral hole that has been left empty while removing
the Delaunay cavity C (DTk, pk+1) from DTk.

The most important building block in any implementation of the Delaunay kernel is the computation
of the simply connected Delaunay cavity C (DTk, pk+1) [9]. One seed triangle t should be found that
has its circumcircle containing pk+1. Then, computing the Delaunay cavity can be done locally using a
depth-first search technique. There are essentially two ways to compute the seed triangle t efficiently.
The history of all triangles may be maintained and a search is made into the history dag to insert a new
point [10]. This solution leads to logarithmic complexity for finding the seeding triangle t. It also requires
some memory overhead because all triangles of all stages have to be maintained. A more straightforward
algorithm consists in doing a “walk” into the triangulation : starting from any triangle τ, finding the next

DTk

pk+1

C (DTk , pk+1) B(DTk , pk+1)

pk+1

DTk+1

FIGURE 1 – Delaunay triangulation DTk (left), Delaunay cavity Cp(DTk, pk+1) (center) and DTk+1 =
DTk−C (DTk, pk+1)+B(DTk, pk+1) (right).
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FIGURE 2 – Delaunay cavity C (DTk, pk+1) in red and Delaunay cavity C (DTk−1, pk) in yellow. A seed
t for building C (DTk, pk+1) is found by starting from an arbitrary triangle of C (DTk−1, pk) and walking
through the triangulation. Here, 32 walking steps were necessary to find t.

n 103 104 105 106 103 104 105 106

2D (random insertion) 3D (random insertion)
Nwalk 23 73 230 727 17 38 85 186
t(sec) 3.6 10−3 9.1 10−2 3.98 187 1.2 10−2 1.8 10−1 3.42 73

2D (Hilbert curve) 3D (Hilbert curve)
Nwalk 2.3 2.4 2.5 2.5 2.9 3.0 3.1 3.1
t(sec) 2 10−3 1.5 10−2 1.5 10−1 1.47 9.0 10−3 7.5 10−2 7.8 10−1 7.81

TABLE 1 – Results of the Delaunay Triangulation algorithm applied to a set of random points uniformly
distributed in [0,1]d . The table compares timings and average number of local searches in the case where
points are inserted in a random fashion and in the case where points are inserted along a Hilbert curve.

triangle in the path to t consists in choosing one of the three neighbors τ j of τ in such a way that pk+1 is
on the other side of τ of the edge that is common to τ and τ j. This walk can be shown to always terminate
using Edelsbrunner’s acyclic theorem [11]. Figure 2 presents the construction of a Delaunay cavity using
this approach. The walking path that allows to find the seed t is depicted with a thick black line. The
Delaunay cavity of point pk+1 is shown in red. In our implementation, we choose τ as the first element
of the Delaunay ball B(DTk−1, pk).

The top half of Table 1 presents the average number of walking steps Nwalk required to find an initial
triangle of the Delaunay cavity in terms of the number of points to insert n, when the points are inserted
randomly. In 2D Nwalk is of the order O(n1/2) as expected. It is interesting to see that the CPU time for
computing the triangulation is asymptotically lower in 3D because Nwalk is of the order O(n1/3).

This behaviour can be improved dramatically by sorting the points in such a way that two successive
points in the set are close to each other geometrically. On Figure 3, a set of 105 points are sorted using
a Hilbert curve (two successive points in the sorted list are linked with a solid line). In the context of
the Delaunay kernel, this kind of data locality can decrease the number of local searches Nwalk that are
required to find the next invalid triangle : one can use as a starting triangle t for point pk+1 one of the
triangles of cavity C (DTk−1, pk). In practice, points are initially separated in groups of increasing sizes.
Then, points are sorted within each group using a Hilbert space-filling curve. This has the advantage to
produce smaller Delaunay cavities during the incremental insertion process than a simple Hilbert sort.
Adding some randomness in the insertion process allows to reduce the average cavity size. Here, we use
the Biased Randomized Insertion Order (BRIO) approach [12] that allows to recover enough randomness
in the process.

Figure 4 shows Hilbert sorting time for a random set of 5 107 points in 3D using a radi sort (linear
complexity). The implementation has been done both on a high end NUMA multicore machine and on a
new Knight’s landing architecture. It is interresting to see that, even using one single core, the new KNL
beats a high end core I7 if vectorization is used wisely.
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FIGURE 3 – Hilbert sort of a sets of 105 random points.

The bottom half of Table 1 presents the average number of walking steps Nwalk as well as timings
in the case where points are inserted along a Hilbert curve. The number of walks Nwalk is now almost
independent of n and both 2D and 3D point insertion algorithms have an overall linear complexity. The
difference between 2D and 3D timings is essentially due to the size of Delaunay cavities : 4 on average in
2D and above 20 in 3D. Assuming that geometrical predicates are slightly more expensive to compute in
3D, a factor of about 6 between the 2D and 3D timings is to be expected. Note that the Hilbert sorting has
a O(n logn) complexity : the overall complexity of the Delaunay triangulation is O(n logn) as well. Yet,
this is an asymptotic bound : with 1 million points, the time required to sort the points is still typically
100 times lower than the time for generating the mesh.

Before proceeding to the description of the proposed fine-grained parallelization of the Delaunay
kernel, let us note that its serial performance is comparable to state of the art algorithms. For the same
point set and for the same machine (same compiler and compiler options), Tetgen 1.5 [13] takes 7.7
seconds to tetrahedralize the set of points while ours takes 7.81 sec (a difference of less than 2%).
The source code of both the 2D and the 3D version of the algorithm is available on Gmsh’s website
www.gmsh.info.

3 A Multithreaded Delaunay Kernel

Assume M computational threads that aim at inserting M points in the triangulation at the same time.
At the end, each thread is going to insert n

M points and our hope is of course to obtain a speedup close
to M. The situation is of course not that simple : two points pi and p j can only be inserted at the same
time in DTk if their respective Delaunay cavities C (DTk, pi) and C (DTk, p j) do not overlap, i.e., if they
do not have triangles in common :

C (DTk, pi)∩C (DTk, p j) = /0.

A non-overlapping situation is more likely to happen if points pi and p j are not close geometrically. For
that purpose, we split the Hilbert curve into M equal parts and assign each part to one thread. Threads
process their assigned points in order. A first chunk of points that correspond to about 20×M points is
inserted in a serial fashion at first [6]. This allows to avoid inevitable cavities overlap in the first stages
of the algorithm. Then, the rest of the points is inserted in parallel. Figure 5 shows different stages of the
algorithm. Delaunay cavities are far apart most of the time thanks to the property of the Hilbert curve.

The multithreaded Delaunay kernel can be written in the following abstract manner :

DTk+1 = DTk +
M−1

∑
i=0

[
−C (DTk, pk+i n

M
)+B(DTk, pk+i n

M
)
]
. (2)
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FIGURE 4 – Hilbert sort of a sets of 5 107 3D random points.

We have implemented the multithreaded Delaunay kernel using OpenMP [14]. Two OpenMP barriers
were used at each iteration k. A first barrier is used after the computation of the M cavities : every thread
i has to complete its cavity C (DTk, pk+i n

M
) at iteration k in order to be able to verify that the cavity does

not overlap other cavities. When several cavities overlap, only the point corresponding to the smallest
thread number is processed. The other points are delayed to the next iteration. A second barrier is used
after the construction of B(DTk, pk+i n

M
) : every thread has to finish computing the Delaunay kernel in

order to start iteration k+1 with a valid mesh.
Three potential threats can definitively harm the parallel speedup :

1. Load balancing : at stage k, the size of the M Delaunay cavities C (DTk, pk+i n
M
) may vary from

one thread to another, leading to some load imbalance. Threads with small cavities will wait at
the barrier for the thread that has the largest cavity.

2. Overlaps : it should be verified that cavity overlaps are rare events : each overlap adds one
iteration in the insertion process.

3. Overheads : The OpenMP parallelization adds its own overhead : two barriers are used per
iteration.

4 A Two-Level Multithreaded Delaunay Kernel

A two-level strategy is a partial solution to both issues of cavity size discrepancy and barrier ove-
rheads. At iteration k, we assume that each thread i inserts M2 points at a time in a serial manner : M2
Delaunay cavities are computed by thread i which leads to a Delaunay kernel that inserts M×M2 points
at each iteration k. Figure 6 shows how M2 affects the distribution of sizes of 3D Delaunay cavities for
a set of on million points that are uniformly distributed on the unit cube. The distribution gets sharper
around the average cavity size, which is definitively advantageous for scalability.

The two-level multithreaded Delaunay kernel can be written in the following abstract manner :

DTk+1 = DTk +
M−1

∑
i=0

M2−1

∑
j=0

[
−C (DTk, pk+i n

MM2
+ j n

M2
)+B(DTk, pk+i n

MM2
+ j n

M2
)
]
. (3)

This procedure generates exactly the same insertion sequence as the multithreaded Delaunay kernel with
M×M2 threads.
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FIGURE 5 – Different stages of the multithreaded Delaunay insertion (M = 4). Delaunay cavities at the
four different stages are colored w.r.t. their thread number.

Figure 7 reports strong scaling results for the two-scale multithreaded Delaunay kernel for M2 =
1,2,4,8. Maximal theoretical speedups Smax are reported as well as true speedups S. The computer that
has been used in is the same 4 socket node with a 8-cores processor on each socket for a total of 32 cores.
The 8 first threads were executed within the scope of one single processor, allowing to maintain the
nearness of threads and their data. Figure 7 shows that speedups increase with M2 as predicted, and that
for M≤ 8 the actual speedup of our procedure is close to the maximal possible one. A speedup of S = 5.8
is attained for M = 8 and M2 = 8, which is slightly better that the ones observed in [6] and which is close
to Smax = 6.7. For a higher number of cores, speedups are moving away from their maximal values even
though we made sure that thread affinity was maintained by allocating vertices and tetrahedra on the
local node [15].

Yet, the good news is that speedups always increase with M : a triangulation of one million points in
3D was performed in 0.89 seconds of wall clock time on 32 cores for a total speedup of S = 13.2. This
is one order of magnitude faster than the fastest procedure available.

Figure 8 gives scaling results for different sizes for the point set : it starts from n = 104 and increases
that number to n = 1.5 108 points, i.e., to about 109 tetrahedra. With M > 8 speedups are even more
important for very large sets of points. This is essentially due to the fact that data locality is better on 32
cores than using one single node for such a large amount of points.

In our implementation, one tetrahedron requires 72 bytes of memory. Less than 100 GigaBytes of
memory were necessary for 109 tetrahedra and it took 142.8 seconds of wall clock time for generating
such a mesh on M = 32 cores with M2 = 8. This corresponds to a rate of about 7 million of tetrahedra
per second.
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FIGURE 6 – Average size of 3D Delaunay cavities for M2 = 1 to M2 = 16.
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FIGURE 7 – Strong scaling of the two-level multithreaded 3D Delaunay kernel. Left figure is a zoom
(1≤M ≤ 8) of the right Figure (1≤M ≤ 32).
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