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Abstract — Many processes can correspond to reactive impregnation in porous solids. These processes 

are usually numerically computed by classical methods like finite element method, finite volume 

method, etc. The disadvantage of these methods remains in the computational time. The convergence 

and accuracy require a small step-time and a small mesh size, which is expensive in computational time 

and can induce a spurious oscillation. In order to avoid this problem, we propose a Self-organized 

Gradient Percolation algorithm. This method permits to reduce the CPU time drastically.  

Keywords — Impregnation, porous media, Self-organized Gradient Percolation, capillary pressure 

curve. 

1. Introduction 

To predict the progression of the non-reactive impregnation in the case on unsaturated sample, the 

classical methods [3] [4] use the Richard’s equation (Eq. (1)) combined with Darcy’s law (Eq. (5)). 

Richard’s equation can be written as follows: 

𝜕(𝜌𝜙𝑆)

𝜕𝑡
= −𝑑𝑖𝑣(𝜌�⃗�) (1) 

with  

𝜙 = 𝑉𝑃 𝑉𝑇⁄  
(2) 

and  

𝑆 = 𝑉𝑓 𝑉𝑃⁄  
(3) 

where 𝜌 is the liquid density, 𝜙 designates the porosity, 𝑆 designates the saturation of the pores, �⃗� is the 

flow density vector, 𝑉𝑃 designates the porous volume, 𝑉𝑇 designates the bulk volume and 𝑉𝑓 designates 

the porous volume occupied by fluid.  

In the isotropic case, Darcy’s law is given by: 

�⃗� = −𝑘𝑔𝑟𝑎𝑑(𝑃𝑐𝑎𝑝) 
(4) 

In the unsaturated case, the Eq. (4) is extended to   

�⃗� = −Ψ(𝑆)
𝐾𝑖𝑛𝑡

𝜂
𝑔𝑟𝑎𝑑(𝑃𝑐𝑎𝑝) (5) 

where ,−𝑔𝑟𝑎𝑑(𝑃𝑐𝑎𝑝) is the driving force, i.e., capillary force using Darcy’s law, 𝑘 is the permeability 

of the porous solid, 𝐾𝑖𝑛𝑡 is the intrinsic permeability, 𝑃𝑐𝑎𝑝 is the capillary pressure, 𝜂 is the dynamic 
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viscosity, Ψ(𝑆) is the relative permeability, which depends on the saturation. Herein, the driving force 

is determined as follows: 

−𝑔𝑟𝑎𝑑(𝑃𝑐𝑎𝑝) = −
𝜕𝑃𝑐𝑎𝑝

𝜕𝑆
𝑔𝑟𝑎𝑑(𝑆) (6) 

where  
𝜕𝑃𝑐𝑎𝑝

𝜕𝑆
 is deduced from the capillary pressure curve. Rewriting Eq. (5) combined with Eq. (6) 

gives 

�⃗� = −Ψ(𝑆)
𝐾𝑖𝑛𝑡

𝜂

𝜕𝑃𝑐𝑎𝑝

𝜕𝑆
𝑔𝑟𝑎𝑑(𝑆) (7) 

Thus, rewriting Eq. (1) combined with Eq. (7) gives 

ϕ
𝜕𝑆

𝜕𝑡
= 𝑑𝑖𝑣 (

𝐾𝑖𝑛𝑡Ψ(𝑆)

𝜂

𝜕𝑃𝑐𝑎𝑝

𝜕𝑆
𝑔𝑟𝑎𝑑(𝑆)) (8) 

In order to obtain an optimal solution of Eq. (8), it’s necessary to determine the capillary pressure 

curve, 𝑃𝑐𝑎𝑝(𝑆), which is a state function of the fluid saturation. There are some models to reproduce 

such curve in the literature. We can cite the phenomenological models [5], the extended Boltzmann 

transform function [8], the morphological pore network model [7], the percolation theory [6], etc. After 

that, the derivative of capillary pressure curve is injected in the Eq. (8). Then, Eq. (8) can be solved by 

numerical methods such as the finite element method (FEM), the finite volume method (FVM), and so 

on [3] [4]. However, these numerical methods are expensive in computational time. Moreover, the 

accuracy in transient stage requires a small step time, but too low step time induces a spurious oscillation 

in space linked to the mesh size [9]. Hence, it’s necessary to overcome these disadvantages, and more 

especially the high computational cost. Therefore, we propose the Self-organized Gradient Percolation 

model. 

2. Problem formulation 

2.1. Introduction to the SGP model 

The aim of the Self-organized Gradient Percolation model is to predict the capillary pressure curve at 

any time using a proposed capillary pressure curve at initial step time (Figure 1 on the left).  

The capillary pressure curve at each time step can be assimilated to a Probability Density Function 

(PDF) by a simple revert of the coordinate system (Figure 1 on the right). Herein, the probability 

density function is defined as follows: 

𝑆(ℎ) = 𝑆𝑚𝑎𝑥𝑒𝑥𝑝 (−
ℎ2𝑚

𝑚𝜎𝑚) (9) 

where 𝑆𝑚𝑎𝑥 designates the maximum saturation, ℎ designates the height, and 𝜎 designates the variance. 

In particular, if 𝑚 = 2, then 𝑆(ℎ) will be a probability density function for a Normal distribution, and 

if 𝑚 = 1, then 𝑆(ℎ) will be a probability density function for a Laplace distribution. 
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Figure 1 –On the left: principle of the sorption curve [2]; On the right: the sorption curve is assimilated to a PDF 

after the revert of the coordinate system. 

Then, it is assumed that the equation of the capillary curve at any time step can be obtained from the 

previous step considering an increase of the variance. The incremental increase of the variance will be 

directly related to the driving force. 

2.2. Algorithm of the SGP model 

 

 

Figure 2 – The site square lattice: 𝑋𝑖,𝑗 is the value at site (𝑖, 𝑗) where 𝑖, 𝑗 are the index of row and the index of 

column respectively. 

In the SGP model, a porous sample is modeled as a site square lattice where 𝑖, 𝑗 are the index of row and 

the index of column respectively. A local average porosity is assign for each square. Furthermore, a 

random value  𝑋𝑖,𝑗 from the probability density function used to model the capillary pressure curve 

(Figure 2) is assign to each square, depending on its position considering that 𝑖 related to the height. 

Then, the local saturation for each square is defined by: 

𝑆𝑖,𝑗 = 𝑋𝑖,𝑗 ∗ 𝑓(𝑖, 𝑗) 
(10) 

where 〈∗〉 is convolution operator and 𝑓(𝑖, 𝑗) is a function which makes the result of the SGP model 

become continuous and reflects the effects of boundary conditions.  The capillary pressure curve at the 

initial time-step is given in the left side of the Figure 3. It is the average value of the saturation at each 

row in the square lattice written as: 

𝜇(0, ℎ) = 𝑆𝑚𝑎𝑥𝑒𝑥𝑝 (−
|ℎ − ℎ0

𝑆𝑚𝑎𝑥|
𝑚

𝑚[𝜎(0, ℎ)]𝑚
) (11) 

𝑿𝒊,𝒋 
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where 𝑚 is a parameter for the type of the distribution, 𝜇 is the average value of the saturation at each 

row in the square lattice, ℎ𝑛
𝑆𝑚𝑎𝑥  is the maximum height of the fully saturation at time step 𝑛, and 𝜎(𝑛, ℎ) 

is variance of the probability density function used to model the capillary pressure curve at a time-step 

𝑛 and for the height ℎ. The capillary pressure curve in the second time step corresponds to the initial 

capillary pressure curve combined with an incremental increase of the variance as follows: 

𝜇(1, ℎ) = 𝑆𝑚𝑎𝑥𝑒𝑥𝑝 (−
|ℎ − ℎ1

𝑆𝑚𝑎𝑥|
𝑚

𝑚[𝜎(0, ℎ) + 𝑐(0, ℎ)]𝑚
) (12) 

where 𝑐(0, ℎ) is the incremental increase of the variance. According to our assumptions (Figure 1, Eq. 

(12)), the incremental increase in variance can be written as follows: 

𝑐(0, ℎ) = (
𝜇(0, ℎ)

𝜇∗ )

(𝑚−1) 𝑚⁄

(
𝐾𝑖𝑛𝑡𝜌𝑊𝑔

𝜂Φ(1 + [2𝑙𝑛(𝜇∗ 𝑆𝑚𝑎𝑥⁄ )]1 𝑚⁄ )
) (13) 

where 𝜌𝑊 is the mass density of the fluid, 𝑔 is the gravity and 𝜇∗ is a fixed reference of 𝜇 . The maximum 

height of the fully saturation at the second time step is  

ℎ1
𝑆𝑚𝑎𝑥 − ℎ0

𝑆𝑚𝑎𝑥 = 𝑐(0, ℎ) (
𝜇(0, ℎ)

𝜇∗ )

(1−𝑚) 𝑚⁄

(1 + [2𝑙𝑛(𝜇∗ 𝑆𝑚𝑎𝑥⁄ )]1 𝑚⁄ ) (14) 

As a result, we obtain the general capillary pressure curve in the form: 

𝜇(𝑛, ℎ) = 𝑆𝑚𝑎𝑥𝑒𝑥𝑝 (−
|ℎ − ℎ𝑛

𝑆𝑚𝑎𝑥|
𝑚

𝑚[𝜎(𝑛 − 1, ℎ) + 𝑐(𝑛 − 1, ℎ)]𝑚
) (15) 

where 

𝑐(𝑛 − 1, ℎ) = (
𝜇(𝑛 − 1, ℎ)

𝜇∗ )

(𝑚−1) 𝑚⁄

(
𝐾𝑖𝑛𝑡𝜌𝑊𝑔

𝜂Φ(1 + [2𝑙𝑛(𝜇∗ 𝑆𝑚𝑎𝑥⁄ )]1 𝑚⁄ )
) (16) 

and 

ℎ𝑛
𝑆𝑚𝑎𝑥 − ℎ𝑛−1

𝑆𝑚𝑎𝑥 = 𝑐(𝑛 − 1, ℎ) (
𝜇(𝑛 − 1, ℎ)

𝜇∗ )

(1−𝑚) 𝑚⁄

(1 + [2𝑙𝑛(𝜇∗ 𝑆𝑚𝑎𝑥⁄ )]1 𝑚⁄ ) (17) 

 

Figure 3– On the left: the capillary pressure curve at initial time step; on the right: the capillary pressure curve at 

general time steps 

The algorithm of the SGP model is summarized in the diagram 1. 
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Diagram 1- The algorithm of the SGP model 

3. Comparison with experimental results and F.E.M. results 

3.1 Experiments description 

The samples used for the experiments are cylinder with 40 𝑚𝑚 in height and 35 𝑚𝑚 in diameter. The 

porous sample is hung upon a free surface of liquid (Figure 4). Two different tests were done. The 

materials and the liquid used for each test are given in table 1. The material parameters are sum up in 

the table 2. 

 

Table 1 – The material and liquid for the tests 

Test Material Liquid 

1 
Alumina 99% 

(AL25) 

Glycerine 

 2 Carbon LCC Oil  

Figure 4- The non-reactive impregnation test 
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Table 2 – The parameters used for the porous material and the liquid 

Properties 
Values  

Units 
Test 1 Test 2 

Initial porosity 0.2 0.19  

Viscosity of the fluid, 𝜂 1.02 0.35 𝑃𝑎 ∙ 𝑠 

Mass density of fluid, 𝜌𝑊 1260 892 𝑘𝑔 ∙ 𝑚−3 

Intrinsic permeability, 𝐾𝑖𝑛𝑡 9.5 × 10−12 7.44 × 10−11 𝑚2 

 

In order to test the SGP model, we decide to build two FEM models using the two most used model 

for the capillary pressure curve [5]: Van Genuchten model, the Brooks and Corey model. Both of these 

models have been computed with the FE method code ‘ASTER’ [2].  

3.2. Model 1 : Van Genuchten model 

The capillary pressure curve according to Van Genuchten model [2] [5] is given by the following form: 

𝑃𝑐𝑎𝑝(𝑆) = 𝑃0(𝑆−1 𝑙⁄ − 1)
𝑙
 

(18) 

where 𝑃0 is a pressure reference value and 𝑙 is an empirical parameter. This model allows to fit well 

the mass gain versus time obtained from the first experimental test. 

3.3. Model 2: Brooks and Corey model 

The capillary pressure curve according to Brooks and Corey model [5] is given by the form: 

𝑃𝑐𝑎𝑝(𝑆) = 𝑃𝑒𝑆𝜆 
(19) 

where 𝑃𝑒 designates the reference pressure and 𝜆 is an empirical parameter. This model allows to fit well 

the mass gain versus time obtained from the second experimental test. 

3.4. SGP model 

To solve Eq. (15), (16) and (17), we fixed the initial value of the height of maximum saturation, the 

variance, the maximal saturation and the type of the distribution (i.e. value of 𝑚). 

Table 3 – The parameters used for the SGP model 

Paremeters Value for test 1 Value for test 2 

ℎ0
𝑆𝑚𝑎𝑥  0 0 

𝑚 2 1 

𝑆𝑚𝑎𝑥 1 1 

𝜎(0, ℎ) 10−4 10−4 
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3.5. Comparison 

 

The figure 4 presents the comparison between the results from the Van Genuchten model (FE Model), 

the SGP model and, for the mass gain, the result from SGP model and experimental results. 

 

Figure 4– On the left: the evolution of the capillary pressure curve for the test 1 at different time steps; on the 

right: the mass gain 

The figure 5 presents the comparison between the results from the Brooks and Corey model (FE Model), 

the SGP model and, for the mass gain, the result from SGP model and experimental results 

 

Figure 5–On the left: The evolution of the capillary pressure curve for the test 2 at different time steps; on the 

right: the mass gain 
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We obtain a very good agreement between the SGP model results and the finite element method results 

for the capillary pressure. We also obtain a good agreement between the SGP model results and the 

experiment results for the mass gain. The table 4 shows the CPU time for the different tests and 

models. The table 4 shows that the SGP model reduced the CPU time by a factor of 𝟏𝟎 for the test 1, 

and a factor of 100 for the test 2. 

Table 4 – CPU time 

Test CPU time using FE model CPU time using SGP model 

1 52 s 6.517 s 

2 580 s 1.119 s 

4. Conclusions  

In this work, we developed a novel algorithm based on the Self-organized Gradient Percolation method. 

According to the value of m, we can easily modify the type of the considered capillary pressure curve, 

following Van Genuchten or Brooks and Corey model or other. Besides, the convolution operator makes 

the result of the SGP model continuous and permit to satisfies the boundary conditions.  

These firsts results confirm that it is possible to reduce drastically the CPU time using the SGP method. 

Yet, there still being a huge work to do in order to study the mesh sensitivity, the impact of the time 

step, the impact of each of the three parameters of the model and their link with the physics (properties 

of the material). 
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