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Résumé —
This abstract briefly describes a novel continuum finite strain formulation of the equilibrium gap

principle, introduced in (CLAIRE, HILD et ROUX, 2004) at the discrete level for linearized elasticity,
used as a regularizer for finite element-based image correlation problems. Consistent linearization and
finite element discretization is provided. The method is implemented using FEniCS & VTK, in a freely
available python library. The equilibrium gap constraint regularizes the image correlation problem, even
in presence of noise, and without affecting strain measurement.
Mots clés — Finite elements, Image Correlation, Equilibrium Gap Regularization, Hyperelasticity.

1 Context

Image processing, in particular image correlation/registration, is playing an increasing role in many
domains such as mechanical (BORNERT et al., 2009) and biomedical (TOBON-GOMEZ et al., 2013 ;
LEE et al., 2014) engineering. Despite important progress in the past decades, robustness, efficiency
and precision of existing methods and tools must still be improved to translate them into medical and
engineering applications. This abstract briefly describes a novel continuum finite strain formulation of
the equilibrium gap principle, introduced in (CLAIRE, HILD et ROUX, 2004) at the discrete level for
linearized elasticity and further developed for instance in (LECLERC et al., 2010), as a regularizer for
finite element-based image correlation problems.

2 Problem

Let us denote I0 & It as the intensity fields of two images representing an object occupying the
domains Ω0 & Ωt in the reference and deformed states, respectively. The problem is to find the mapping
ϕ between Ω0 & Ωt , or equivalently the displacement field U (ϕ(X) = X +U (X)), which is reformulated
as a minimization problem written in the reference configuration :

find U = argmin{U∗}

{
J2 (U∗) =

1−β

2

∫
Ω0

(
It ◦ϕ

∗− I0

)2
dΩ0 +βψ

reg (U∗)
}
, (1)

where ψreg is required to regularize the otherwise ill-posed problem, and β is the regularization strength.
Many regularizers have been proposed, including fluid (CHRISTENSEN, RABBITT et MILLER, 1996) and
hyperelastic (VERESS, GULLBERG et WEISS, 2005 ; PHATAK et al., 2009 ; GENET, STOECK et al., 2016)
constraints. Hyperelastic warping consists in using the strain energy potential directly as regularizer :

ψ
reg,hyper = ρ0ψ, (2)

thus penalizing strain. Here we propose an alternate regularizer, which essentially penalizes any devia-
tion from the solution of an hyperelastic body in equilibrium with arbitrary external loads : ψreg,equil =
1
2

∥∥div
(
P
)∥∥2

L2(Ω0)
, where P = ∂ρ0ψ

∂F is the first Piola-Kirchhoff stress tensor. However, we discretize Pro-

blem (1) using standard Lagrange elements, so that P belongs to L2 (Ω0) but not H (div;Ω0). Thus, the
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following equivalent norm is used instead :

ψ
reg,equil = ∑

K

1
2

∥∥div
(
P
)∥∥2

L2(K)
+∑

F

1
2h

[[
P ·N

]]2
L2(K)

, (3)

where K denotes the set of finite elements, F the set the interior faces, h a characteristic length of the
mesh. As strain energy function, for both hyperelastic and equilibrated warping we use the classical
Ciarlet-Geymonat (CIARLET et GEYMONAT, 1982) potential :

ρ0ψ =
κ

2
(
J2−1− ln(J)

)
+

µ
2
(IC−3−2ln(J)) , (4)

where κ & µ denote bulk and shear modulus, J = det
(
F
)
, IC = tr

(
C
)

, C = tF ·F , F = 1+ grad(U),
and which makes sense for arbitrary deformation levels (LE TALLEC, 1994). In practice, we use a unit
Young’s modulus and null Poisson’s ratio, so that κ = 1

3 & µ = 1
2 , the strength of the regularization being

set by the parameter β.

3 Variational formulation

After derivation and linearization, Problem (1) becomes :

find ∆U / (1−β)acor (U ;∆U ,V )+βareg (U ;∆U ,V ) = (1−β)bcor (U ;V )+βbreg (U ;V )∀V , (5)

where (without image hessian terms)
acor (U ;∆U ,V ) =

∫
Ω0

((
∇I1 ◦ϕ(U)

)
·∆U

)((
∇I1 ◦ϕ(U)

)
·V
)

dΩ0

bcor (U ;V ) =
∫

Ω0

((
I1 ◦ϕ(U)

)
− I0

)((
∇I1 ◦ϕ(U)

)
·V
)

dΩ0

(6)

In case of hyperelastic warping, one has :
areg,hyper (U ;∆U ,V ) =

∫
Ω0

∂ρ0ψ

∂E
(U) : δE (∆U ,V )+δE (U ,∆U) :

∂2ρ0ψ

∂E2 (U) : δE (U ,V )dΩ0

breg,hyper (U ;V ) =
∫

Ω0

∂ρ0ψ

∂E
(U) : δE (U ,V )dΩ0

(7)

And in case of equilibrated warping, one has :

areg,equil (U ;∆U ,V ) = ∑
K

∫
K

div

(
F (∆U) · ∂ρ0ψ

∂E
(U)+F (U) ·

(
∂2ρ0ψ

∂E2 (U) : δE (U ,∆U)

))

· div

(
F (V ) · ∂ρ0ψ

∂E
(U)+F (U) ·

(
∂2ρ0ψ

∂E2 (U) : δE (U ,V )

))

+ div

(
F (U) · ∂ρ0ψ

∂E
(U)

)
·div

(
F (V ) ·

(
∂2ρ0ψ

∂E2 (U) : δE (U ,∆U)

)
+F (∆U) ·

(
∂2ρ0ψ

∂E2 (U) : δE (U ,V )

)

+ F (U) ·

(
δE (U ,∆U) :

∂3ρ0ψ

∂E3 (U) : δE (U ,V )+
∂2ρ0ψ

∂E2 (U) : δE (∆U ,V )

))
dK

+ ∑
F

∫
F

[[(
F (∆U) · ∂ρ0ψ

∂E
(U)+F (U) ·

(
∂2ρ0ψ

∂E2 (U) : δE (U ,∆U)

))
·N

]]

·

[[(
F (V ) · ∂ρ0ψ

∂E
(U)+F (U) ·

(
∂2ρ0ψ

∂E2 (U) : δE (U ,V )

))
·N

]]

+

[[(
F (U) · ∂ρ0ψ

∂E
(U)

)
·N

]]
·

[[(
F (V ) ·

(
∂2ρ0ψ

∂E2 (U) : δE (U ,∆U)

)
+F (∆U) ·

(
∂2ρ0ψ

∂E2 (U) : δE (U ,V )

)

+ F (U) ·

(
δE (U ,∆U) :

∂3ρ0ψ

∂E3 (U) : δE (U ,V )+
∂2ρ0ψ

∂E2 (U) : δE (∆U ,V )

))
·N

]]
dF

breg,equil (U ;V ) = ∑
K

∫
K

div

(
F (U) · ∂ρ0ψ

∂E
(U)

)
·div

(
F (V ) · ∂ρ0ψ

∂E
(U)+F (U) ·

(
∂2ρ0ψ

∂E2 (U) : δE (U ,V )

))
dK

+∑
F

∫
F

[[(
F (U) · ∂ρ0ψ

∂E
(U)

)
·N

]]
·

[[(
F (V ) · ∂ρ0ψ

∂E
(U)+F (U) ·

(
∂2ρ0ψ

∂E2 (U) : δE (U ,V )

))
·N

]]
dF

(8)
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4 Resolution

Problem (5) is discretized using continuous Galerkin elements, and solved in FEniCS 1. Integration
of image terms (6) is done using VTK 2. Code is freely available at https://bitbucket.org/mgenet/
dolfin_dic.

Since the resolution has proven unstable on in vivo images (especially because (i) in current VTK
implementation, interpolated gradients are not the actual gradients of the interpolated images 3 ; and (ii)
the mechanical term is very steep), a gradient-free golden section line search has been implemented,
where the initial interval is taken as

[
1−ϕ

2−ϕ
; 1

2−ϕ

]
(with ϕ = 1+

√
5

2 ) such that the two initially tested values
are 0 & 1.

5 Results on synthetic data

Here we consider the simple problem of a uniformly deforming square domain, and study the in-
fluence of the regularization strength β on the computed strain. Figure 1 shows the initial and final
images with superimposed undeformed and deformed mesh, for three levels of noise, as well as the final
measured strain for both methods.

In case of hyperelastic warping, if the regularization strength is close to 1, the mesh does not deform.
And when regularization strength decreases, measured strain tends to converge toward the exact value.
For noise-free images, it does converge exactly. For noisy images, there is an optimum where the mean
strain is close to the exact solution and standard deviation is still limited.

Conversely, with equilibrated warping, the registration is almost perfect, over a wide range of regu-
larization strengths, even on noisy images.
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FIGURE 1 – Results on synthetic data. Left : hyperelastic (white mesh) vs. equilibrated (black mesh)
warping, for a regularization strength of 0.1. Right : influence of regularization strength on hyperelastic
(top) and equilibrated (bottom) warping strains. Ground truth is -15% homogeneous strain.

1. https://fenicsproject.org
2. http://www.vtk.org
3. http://www.vtk.org/Wiki/VTK/Image_Interpolators\#Gradients
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6 Results on in vivo images

Here we consider 3DCSPAMM (STOECK et al., 2012) cardiac magnetic resonance images of a heal-
thy human subject. Pipeline for image acquisition and segmentation has been described in (GENET, LEE,
NGUYEN et al., 2014 ; GENET, LEE, GE et al., 2015). Figure 2 shows the resulting strains computed by
both methods. Main features of left ventricular deformation are well captured, including radial thickening
as well as circumferential and longitudinal shortening, though radial strains are somewhat smaller than
expected, as has already been noted in (TOBON-GOMEZ et al., 2013). Equilibrated warping produces
larger absolute strain values than hyperelastic warping, closer to expected values (TOBON-GOMEZ et al.,
2013).
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FIGURE 2 – Results on in vivo data, hyperelastic (red) vs. equilibrated (blue) warping. Top : Sequence of
3D CSPAMM images with superimposed mesh. Bottom : Sequence of local strain components.

7 Conclusion

Equilibrated warping is a powerful method for non-rigid registration of images involving large de-
formation. The equilibrium gap constraint regularizes the image correlation problem, even in presence
of noise, and without affecting strain measurement. The method has been implemented based on FEniCS
and VTK, providing an efficient tool for 2D & 3D images registration.
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