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Résumé — In this work, we conduct an in-depth investigation of the well-known problem of non-unique
solutions to the inverse identification problem for indentation-based characterization, with particular
attention to materials following the Vocé law. Knowing the non-unicity of the solution obtained with
conical indenters, we preferentially use spherical indenters instead so as to involve an additional length
scale. To focus on the nature of the design problem (i.e. well posed or not) independently of experimental
errors, the identification is performed using "noise-free" simulated imprint shapes.
Mots clés — Inverse problem, indentation, manifold-learning, Vocé law.

1 Introduction

One of the key advantages of indentation-based characterization is its ability to retrieve a considerable
number of mechanical properties for a variety of materials while still being "non-destructive" in nature.
That being said, the quality of the solutions obtained has consistently been called into question, given
that the final inverse identification problem appears to be, at least in most cases, ill-posed, rendering the
obtained solutions non-unique.

The literature available on indentation-based mechanical characterization seems to indicate that the
non-unicity of the solution to the final inverse identification problem is now a focal point of research
interest. After years of study, it is now widely recognized that the non-uniqueness issue is particularly
severe when we use self-similar indenters (conical) for the calibration of the well-known two-parameter
Hollomon’s (power) law. We note further that this conclusion is relevant only to identification using the
indentation load-displacement (P-h) curve, i.e. without taking into account the residual imprint post-
indentation.

Chen et al. [1] attributed this difficulty, at least in part, to the absence of an explicit relationship bet-
ween a material’s elastoplastic parameters and its indentation response. They proposed a series of explicit
formulations to determine the so-called "mystical material” sets with distinct elastoplastic properties but
near-indistinguishable P-h curves. By explicitly enforcing constraints on the curvature of the loading
curve and the ratio of loading/unloading work and using a conical indenter, near-indistinguishable "mys-
tical material" pairs were obtained. Then, to tackle this problem, they recommended using dual sharp and
spherical indentation, both of which are capable of yielding a unique combination of material properties.
The efficiency of these two protocols has been validated by several other authors in the literature.

It is all too clear that the overwhelming majority of the indentation-based identification methods re-
ported in the literature so far have been based on exploiting solely the P-h curve, ergo the non-uniqueness
issue has, thus far, been only understood in the context of the P-h curve rather than that of the residual
imprint profile. On the other hand, recent research indicates that many important engineering materials
deviate significantly from simple power law hardening.

With this in mind, we focus here on materials following Vocé hardening with a saturation stress at
high strains. We limit ourselves to spherical indentation so as to consider an additional length scale,
giving special attention to the existence of non unique solutions to the inverse problem, and examine the
source of this issue. The identification is performed using the shape manifold concept and a variety of
non-linear manifold learning algorithms developed by our research group [2, 3].
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FIGURE 1 – Vocé law defined on three parameters

2 Overall concept and formulation

2.1 Material model

As mentioned in the preamble, instead of the Hollomon’s hardening law adopted in [2] and most, if
not all the papers in the literature surveyed, we focus here on the Vocé law which involves an additio-
nal elastoplastic parameter. From [5], the uniaxial constitutive behavior is represented by the following
equation {

σ = Eε

σ =
σy

1−m1
(1−m1e−m2εp)

, (1)

where E is the Young’s modulus (considered as known a priori in current work), ε refers to the total
strain, εp the plastic stain, σy the elastic limit and m1, m2 are two dimensionless material parameters
which define the hardening behavior. Some authors adopt a terminology involving a "saturation stress"
σs so as to give a physical meaning to the parameters. The plastic portion of this law may be written as :

σ = σy +Q(1− e−γεp). (2)

Here, Q = σs−σy is the difference between σs and initial elastic limit. Essentially, Q is a function of σy

and m1, reading Q= m1
1−m1

σy. Like m2 in (1), the parameter γ controls how "rapidly" the stress approaches
the saturation level. As can be seen in Fig.1, the parameter γ may vary in a rather large range, from 2 to
several hundred. This range is wide enough to accommodate the vast majority of engineering materials
showing hardening behavior. For example, the constitutive relation illustrates a bilinear elasto-plastic
behavior as γ reduces to 2, while an elastic-perfectly plastic behavior is approximated by γ = 300. In
current work, for the sake of clarity, we employ (2) and assign large ranges of variation to σy and Q so
as to allow for various different materials.

2.2 Finite element model

Spherical indenterMaterial piece

50 mm

50 mm

FIGURE 2 – Finite element model of specimen and a spherical indenter tip.

The FE meshes for both indenter and the specimen are shown in Fig.2. We use a denser mesh in
the region of interest around the contact zone. Also, for better agreement with the semi-infinite domain
assumption, we choose a rather large specimen size 50mm×50mm. Axisymmetric boundary conditions

2



are applied in view of the geometric symmetry of both the specimen and the indenter. The indentation
procedure is modeled assuming finite strains, using ABAQUS/Standard with 4394 four-noded axisym-
metric elements CAX4R for the specimen and 6070 elements for the spherical indenter. The contact
interface between the two pieces is characterized by a Coulomb friction coefficient c which is set to 0.2.
For the indenter, we use the elastic properties of Tungsten Carbide, i.e. Young’s modulus Ei = 600GPa
and Poisson’s ratio νi = 0.23. The three Vocé hardening parameters describing the plastic behavior (i.e.
other than the elastic properties E) need to be identified.

2.3 Identification in Reduced-order space

We basically apply the method of Proper Orthogonal Decomposition (POD) to the collection of im-
print shapes obtained by a series of indentation tests, corresponding to a set of M numerical experiments
obtained by an appropriate Design of Experiments for the 3 varying material parameters (σy,Q and γ).
The different imprint shapes are extracted from the FE simulation results and each is considered as a
snapshot si, i = 1,2 · · ·M. The snapshot matrix S is then generated from the centered snapshots

S = [s1− s,s2− s, · · ·sM− s], (3)

where s is the mean snapshot s = 1
M ∑

M
i=1 si. We then use POD to obtain the reduced-order vector space

in which the imprint shape evolves. Singular value decomposition of S yields

S =ΦDVT, (4)

where D contains the singular values di ; each column of Φ being an eigenvector of the covariance
matrix C = SST, with λi = d2

i as the corresponding eigenvalues. These eigenvectors φi are generally
called the POD modes. Each snapshot si may then be accurately reconstructed by using the projection
basis Φ= [φ1,φ2 · · ·φM]

si = s+Φαi = s+
M

∑
j=1

α
i
jφ j, (5)

where αi
j is the projection coefficient (or the coordinates in reduced space) for the ith snapshot on the jth

mode, given
α

i
j = φT

j (si− s), j = 1,2 · · ·M. (6)

By combining (3)-(6), a one-to-one correspondence is thus built up between higher-dimensional inden-
tation responses and lower-dimensional coordinates of the new space. We note here that the indentation
response si is not limited to the imprint mappings, it could also be the corresponding indentation curves,
or even a combination of the two.

In this constructed low-dimensional space, a predictor-corrector manifold walking algorithm (pre-
viously proposed in [3]) is used to iteratively locate the local manifold in the vicinity of the projection
of the target imprint shape (the target is usually an experimental shape, but we have used a simulated
imprint for the reasons described in the abstract and introduction).

3 Numerical test-case

3.1 Non-unicity in the identification of Vocé hardening parameters

In this section, we will attempt to identify the three-parameter Vocé law within the reduced-order
space constructed by following the procedures described in Sect.2.3. Since the residual imprint shape
outperformed the loading-unloading curve for identifying Hollomon’s power law parameters, we will
use the imprint shape correlation approach for the identification. The corresponding P-h curves will be
compared only at convergence purely for the purpose of verification. Again, we use a numerical imprint
as the target shape, and the "pseudo-experimental" response is simply an FE simulation using the model
presented in Sect.2.2, with a maximal penetration depth hmax = 0.1mm, and using : σ

re f
y = 300MPa,

Qre f = 200MPa (σs = 500MPa) and γre f = 14. Using the local manifold learning ”Floating search”
algorithm [2, 3], we intend to identify the three ”missing” constitutive parameters.
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An arbitrarily chosen combination of constitutive parameters A : (σy,Q,γ) = (430,350,100) is set as
the initial point. In Fig.3, we present the convergence histories for the three Vocé parameters, normalized
by their corresponding reference/nominal values, σ

re f
y ,Qre f and γre f . We observe that by beginning the

search from A, we retrieve the three parameters with reasonable accuracy at the end of 16 iterations, with
a maximum error of 2.14% being observed for the third parameter γ (by comparing with their reference
values) in Tab.1.
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FIGURE 3 – Convergence summary for the three Vocé parameters normalized by their corresponding
referential values (initial point A : (σy,Q,γ) = (430,350,100)).

Next, to rule out any possible influence of the choice of the initial point in inverse optimization, we
assign another arbitrarily chosen combination of material parameters B : (σy,Q,γ) = (200,600,140) as
the new initial point for the algorithm. The new convergence histories for the three parameters are shown
in Fig.4, and the final identified values obtained are compared with that obtained by starting from A, in
Tab.1. As seen in Fig.4, despite all three parameters clearly stabilizing around a particular set of values,
only ONE of them (Q) is probed correctly when compared to the reference value. Large deviations from
the reference values are seen for the two other parameters, γ in particular with an error of up to 200% !
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FIGURE 4 – Convergence summary for the three Vocé parameters normalized by their corresponding
referential values (initial point B : (σy,Q,γ) = (200,600,140)).

TABLE 1 – Recovered Vocé parameters through different initial iteration points. The results are for a
solid with E and ν fixed at 70GPa and 0.3, respectively.

Case σy (MPa) %err σy Q (MPa) %err Q γ %err γ

A 300.50 0.17% 200.88 0.44% 13.70 2.14%
B 260.29 13.24% 201.15 0.57% 41.50 196.43%

We observe that it appears to be difficult to accurately identify subtle differences in the post-yield
properties using only the indentation imprint. In other words, the two identified parameter sets belong to
a so-called "mystical pair" of materials, both of which ostensibly minimizing the discrepancy with the
"experimental" imprint.

As mentioned previously, the corresponding indentation P-h curves will now be compared to check
whether the two "mystical sibling" materials can still be distinguished by using other indentation res-
ponses. Unfortunately, we note in Fig.5, that the two indentation curves are nearly overlapping despite
the constitutive behaviors of the two materials being clearly distinct from each other (inset on top-left
corner). Even though, as reported in [4], the combination of P-h curve and imprint can sometimes ren-
der the inverse problem slightly better-posed, this combination seems to be meaningless in the current

4



0 0.02 0.04 0.06 0.08 0.1 0.12

0

100

200

300

400

A

B

0 0.1 0.2 0.3 0.4 0.5

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

A

B

(a) P-h curve (b) Residual imprint 

0 0.2 0.4 0.6 0.8 1 1.2

0

100

200

300

400

500

A

B

FIGURE 5 – Comparison of indentation responses of mystical materials.

case wherein both the indentation curves and the residual imprints are indistinguishable using a spherical
indenter.

The question then is, where does this problem of non-unicity arise ? Is this failure in characterization
due to the inefficiency of the optimization algorithm used in the inverse analysis, or simply because the
collected/measured information from the indentation response does not adequately interpret all material
plasticity ? This question will be answered in the follow subsections by comparing a series of manifolds
built on different synthetic i.e. simulated indentation responses.

3.2 Verification of the efficiency of the manifold identification procedure
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FIGURE 6 – Illustrative stress-strain curves and the corresponding manifolds built without FE simula-
tions : (a)-(b) for Hooke’s law, (c)-(d) for Hollomon’s law, and (e)-(f) Vocé law.

To verify the manifold identification protocol, we first directly use the constitutive behavior itself
as defined by the corresponding material parameters to construct the low-dimensional manifold, i.e.
without indentation. This simply means that, in lieu of the indentation response (imprint shape), we use
the σ− ε curve itself as a "special shape" and used for the POD snapshots. For comparison, we study
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the one-parameter (Young’s modulus E) Hooke’s law, the two-parameter (σy and n) Hollomon’s and the
three-parameter (σy,Q and γ in (2)) Vocé law. Sufficiently large parameter intervals are chosen for the
Design of Experiments : E ∈ [200Gpa,800Gpa] for Hooke’s law, σy ∈ [200,240] and n ∈ [0.2,0.3] for
Hollomon’s power law, and σy ∈ [300,800], Q ∈ [200,400] and γ ∈ [10,60] for Vocé hardening law.

On the left of Fig.6, we show a series of representative stress-strain curves for the 3 different material
constitutive laws. As indicated, all the curves in Fig.6.(a) are generated varying the only parameter E,
and the constructed manifold is revealed to be a straight line, as in Fig.6.(b). Using the hypothesis of
the manifold [2], the stress-strain behavior of any other elastic material lay then be projected as a single
point lying on this line, and the identification of the parameter E will be done simply by interpolating the
points.

Similarly, all the curves in Fig.6 (c) are governed by the two parameters of the Hollomon’s power
law, σy and n, and as expected, the constructed manifold shows a feature of a 2D surface. As observed,
the projections of different material properties are arranged in a regular fashion on the manifold, allowing
us to once again use interpolation to probe the properties of a given target material.

Finally, for the Vocé law defined by σy, Q and γ, the stress is constricted by a clear saturation stress
at high strain level, see Fig.6 (e), and we clearly observe that the corresponding manifold in the reduced
space is a 3D cloud of points, Fig.6 (f), indicating that all three parameters are independent (as they
should be) and we can identify them correctly and uniquely from the stress-strain curve.

For the sake of completeness, we carry out eight different identification procedures for the Vocé
parameters by directly using the constitutive law "special shape" with different starting points. The σ−ε

curve obtained from the set (σy,Q,γ) = (300,200,25) is used as the "target shape", and the parameter
set to be identified is located (by design) at the centroid of the cube enclosed by the eight initial points
as vertices, as illustrated in Fig.7. Tab.2 lists the final estimates for the three parameters and the number
of iteration steps for each corresponding case. We note that, in all eight cases, we always converge to a
unique combination of parameters. A maximal difference of 0.16% and 0.1% are observed for γ and Q
respectively, with respect to their target values.

Target value

FIGURE 7 – Eight different initial iteration points defined in parameter space.

We conclude therefore that the number of identifiable parameters may be estimated by the dimen-
sionality of corresponding manifold, confirming the manifold hypothesis. This inference may be readily
verified from the manifolds presented in Fig.6 and the corresponding identification results. While we are
aware that no iteration is required to probe material parameters from the uniaxial stress-strain constitu-
tive law and the identification can be readily accomplished by curve fitting provided that the target σ− ε

curve has already been obtained from a tensile test. That said, the identification procedures presented
above, though redundant and bordering on overkill for this simple problem, still help us to rule out the
possibility of any inefficiency or other issues surrounding either the manifold hypothesis or the manifold
learning algorithm.
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TABLE 2 – Vocé parameters identified through stress-strain curve with different iteration staring points.
Initial points σy Q γ Iter No.

1© 299.96 200.08% 25.02 34
2© 300.08 199.86% 24.96 34
3© 299.92 200.12% 25.04 25
4© 299.93 200.10% 25.04 21
5© 299.93 200.19% 25.03 23
6© 299.97 200.03% 25.02 28
7© 299.96 200.11% 25.02 23
8© 300.02 199.95% 24.99 33

References 300 200 25 –
Max error 0.03% 0.10% 0.16% –

3.3 The shortcomings of indentation as a method of characterization

In the current section, an analogous procedure to the one explained in Sect.3.2 is followed with
consideration of indentation responses rather than σ− ε curve. Following our previous research, we
preferentially use the residual imprint profiles upon withdrawal of the spherical indenter in order to
obtain more information about the material’s plastic behavior after indentation. For the Hooke’s law, we
need only the indentation curve since no plastic deformation is present after unloading, i.e. no imprint,
regardless of the choice of maximum penetration depth. In any case, unlike standard indentation curves,
the loading and unloading portions overlap for perfectly elastic materials.

On the left of Fig.8, we show a collection of representative indentation P-h curves and/or residual
imprints corresponding to the three chosen material laws. The constructed manifolds are shown on the
right. It is observed in Fig.8 (b) that, once again, the manifold for Hooke’s law is a straight line. While
the distribution of the various indentation curves is slightly different from that shown in Fig.6 (b), it is
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however quite understandable that this is due to the fact that slight variations in the Young’s modulusE
(i.e., ∆E in DoE sampling) do not always lead to the same variation in the indentation curve. By exami-
ning the elastic properties, we find that the materials (represented by their modulus) located in the dense
zone of the manifold correspond to extreme hard materials (with higher E). In any case, the one-to-one
correspondence between parameter values for E and the indentation curve is still valid for this first case.

Next, we consider materials hardening according to Hollomon’s power law, the manifold in Fig.8
(d) suggests that the non-unicity issue does not present itself in this case either. The two parameters can
be easily identified from a measured indentation imprint. In this illustrative case, we adopt a spherical
indenter, but even with a single conical indenter, similar results are obtained. This is explained by the
fact that material plasticity is, in most cases, better interpreted from the residual imprint than from the
P-h curve, during indentation-based characterization. This is discussed at length in our previous work [4]
along with a discussion of the effect of the shape of the indenter.

For materials hardening according to the three-parameter Vocé law on the other hand, when we map
the imprint mappings (that should be governed by three parameters) we obtain a quasi-2D manifold, Fig.8
(f) ! This may signify a possible inter-dependence of the material parameters in the indentation responses,
or in other words, the influences of the variations of the different parameters on indentation imprint may
actually be nullified by each other. As a consequence, the combination of material parameters identified
assuming the Vocé law is likely unreliable. This insight gleaned from the manifold of indentation imprints
turns to be reconciled with the non-unique identification of Vocé parameters detailed in Sect.3.1. On the
other hand, we build the manifold using indentation P-h curves as well, however, a similar manifold as
that obtained using the imprints is obtained.

For these reasons, we must question whether simply relying only on the indentation test is sufficient
to characterizing Vocé hardening materials, or if supplementary material data from other experimental
techniques (other than indentation) would be required.

4 Conclusions and perspectives

The objective of this work was to shed some light on the non-unicity problem faced during characte-
rization by indentation, with special attention paid to the identification of Vocé law materials.

We demonstrate, by solving the inverse problem using the shape manifold and associated learning
algorithms, that the so-called ”mystical material” pairs do exist. By explicitly comparing the 3D mani-
folds considering directly the constitutive law itself as a "shape" with those obtained from the indentation
responses for three different constitutive laws, we feel that the failure of identification is not due to the
inefficiency of the identification protocol, but rather a direct consequence caused by the "averaged" in-
dentation response.

As future work, we recommend that the characterization of Vocé parameters by the indentation test,
hitherto given almost no attention in the literature, should be studied in more detail.
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